Take the 'DIE' out of Diet...

Harvey S. Hahn, MD, FACC

KMC Grand Rounds Feb 2018

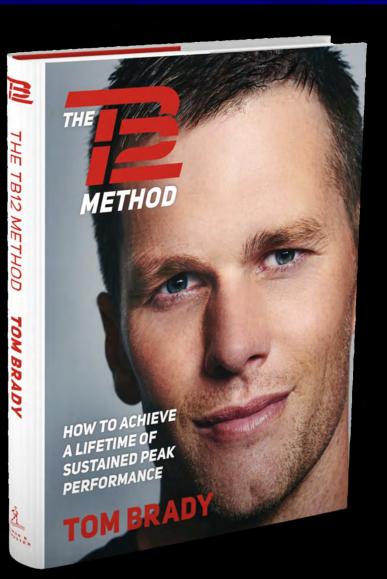
mind body spirit

My Heart. My Life.

Keep an open mind, think...

Don't be married to your hypothesis...

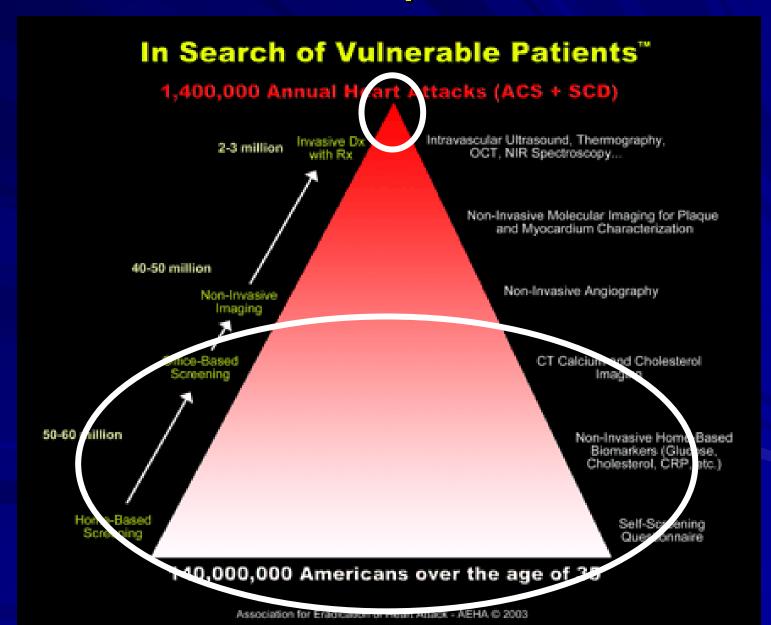
The world has gone INSANE!


"Dovorey, no provorey"

"Trust, but verify"

Eat like a G.O.A.T?

COOK DELICIOUS, FEEL AMAZING.



PRE-ORDER NOW

ACCOUNT

Treatment vs prevention...

The River...

The 80% rule!

When diet is wrong, medicine is of no use. When diet is correct, medicine is of no need.

~Ancient Ayurvedic Proverb

THE AMERICAN JOURNAL *of* MEDICINE ®

CrossMark

A Deficiency of Nutrition Education and Practice in Cardiology

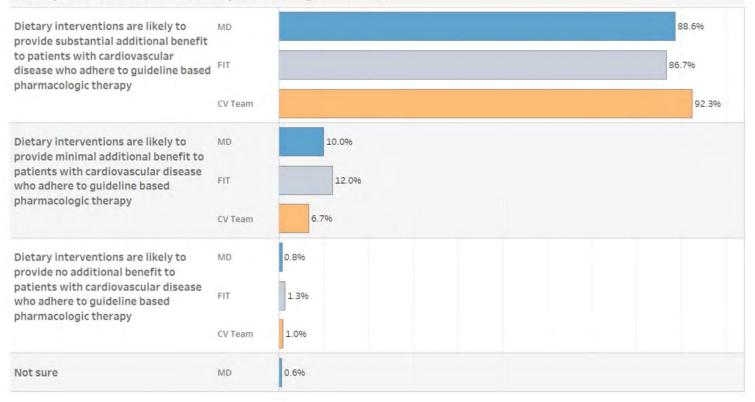
Stephen Devries, MD,^{a,b} Arthur Agatston, MD,^{c,d} Monica Aggarwal, MD,^e Karen E. Aspry, MD,^f Caldwell B. Esselstyn, MD,⁹ Penny Kris-Etherton, PhD,^h Michael Miller, MD,ⁱ James H. O'Keefe, MD,^j Emilio Ros, MD,^k Anne K. Rzeszut, MA,^l Beth A. White, DNP,^m Kim A. Williams, MD,ⁿ Andrew M. Freeman, MD^o

^aGaples Institute for Integrative Cardiology, Deerfield, Ill; ^bNorthwestern University Feinberg School of Medicine, Chicago, Ill; ^cHerbert Wertheim College of Medicine, Florida International University, Miami; ^dBaptist Health of South Florida, Miami Beach; ^eDivision of Cardiology, University of Florida, Gainesville; ^fLifespan Cardiovascular Institute, Alpert Medical School of Brown University, Providence, RI; ^gCleveland Clinic Wellness Institute, Ohio; ^hDepartment of Nutritional Sciences, Penn State University, University Park; ⁱUniversity of Maryland School of Medicine, Baltimore; ^jSaint Luke's Mid America Heart Institute, Kansas City, Mo; ^kLipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona and Ciber Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; ⁱAmerican College of Cardiology, Washington, DC; ^mMarshall Health, Joan C. Edwards School of Medicine, Huntington, WV; ⁿRush University Medical Center, Chicago, Ill; ^oDivision of Cardiology, Department of Medicine, National Jewish Health, Denver, Colo.

The American Journal of Medicine Volume 130, Issue 11, Pages 1298-1305 (November 2017) DOI: 10.1016/j.amjmed.2017.04.043

Nutrition Education From Medical School to Fellowship

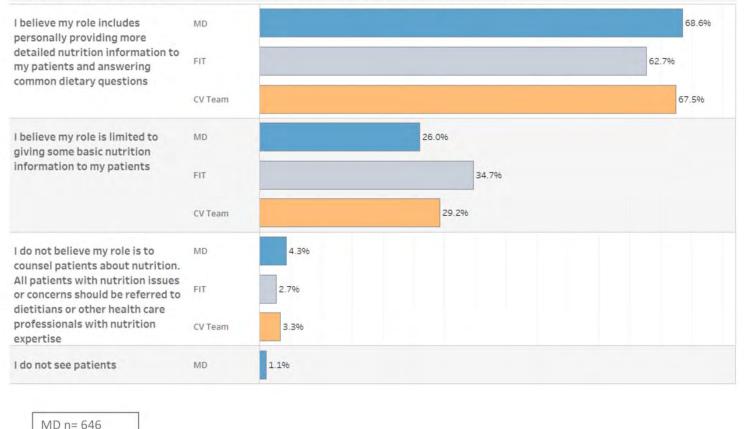
Receive a formal, practical lecture, series, or discussion on the role of nutrition and diet in overall health		l / Professional ool	During Residency		
	FIT	MD	FIT	MD	
Yes, part of one lecture	0%	4%	7%	2%	
Yes, one lecture	24%	17%	21%	9%	
Yes, a series of lectures	39%	21%	5%	6%	
Yes, a bedside discussion on teaching rounds	0%	3%	11%	7%	
No	21%	31%	43%	59%	
Don't recall	16%	24%	13%	17%	


During Fellowship Training	FIT	MD
recall receiving a high level of nutrition education that gave me excellent skills for counseling patients.	0%	1%
recall receiving a solid nutrition education during my fellowship training that adequately prepared me for counseling patients.	9%	8%
recall receiving minimal nutrition education during my fellowship training that did not adequately prepare me for counseling patients.	35%	33%
do not recall receiving any nutrition education during my fellowship training.	56%	57%

MD n= 646 FIT n= 75

Attitudes Regarding Dietary Interventions

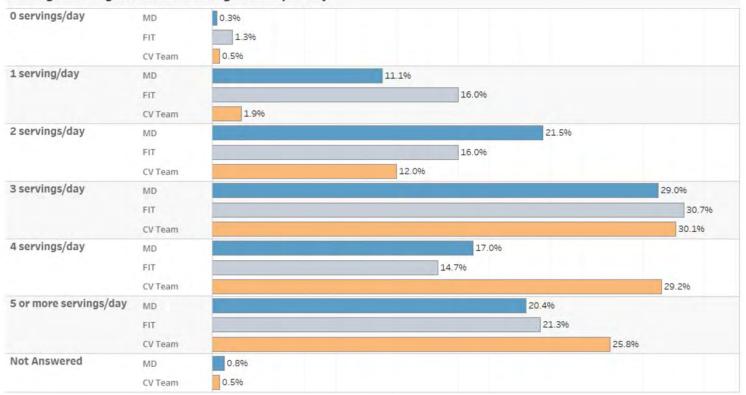
Dietary Interventions Most Closely Resembling Your Own...



MD n= 642 FIT n= 75 CV Team n= 209

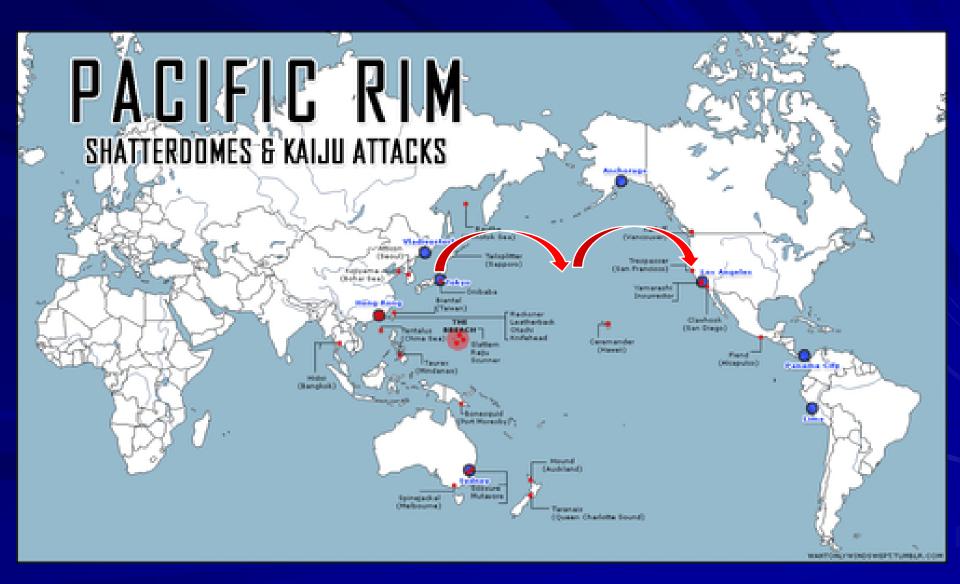
Perceived Role in Delivering Nutrition Information

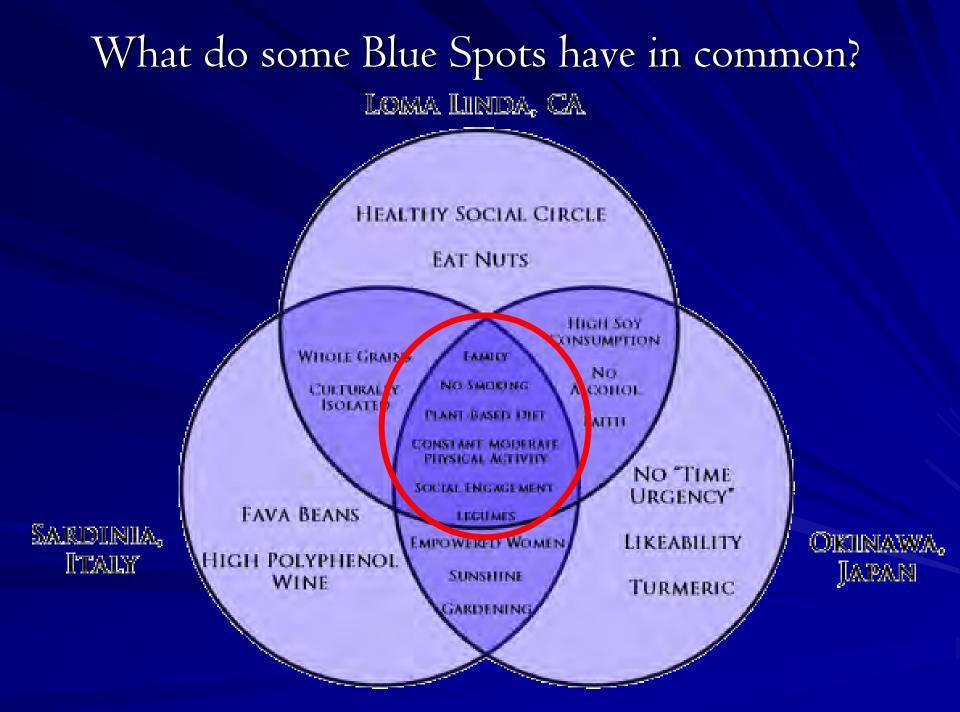
Philosophy Regarding the Role of Nutrition Counseling in Your Cardiology Practice...



FIT n= 75 CV Team n= 209

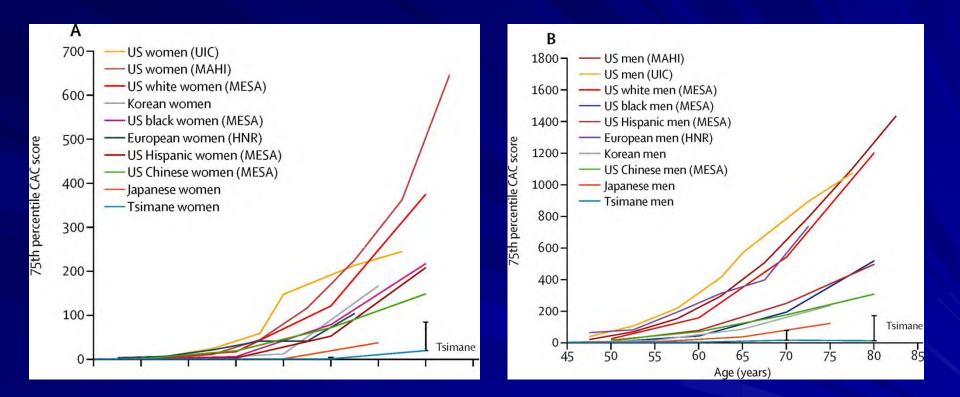
Dietary Habits of Cardiovascular Professionals


Average Servings of Fruits and Vegetables per day


MD n= 642 FIT n= 75 CV Team n= 209

Honolulu Heart Study

W Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study


Hillard Kaplan, Randall C Thompson, Benjamin C Trumble, L Samuel Wann, Adel H Allam, Bret Beheim, Bruno Frohlich, M Linda Sutherland, James D Sutherland, Jonathan Stieglitz, Daniel Eid Rodriguez, David E Michalik, Chris J Rowan, Guido P Lombardi, Ram Bedi, Angela R Garcia, James K Min, Jagat Narula, Caleb E Finch, Michael Gurven, Gregory S Thomas

Vascular age was ~28 years YOUNGER than USA!

Volume 389, Issue 10080, Pages 1730-1739 (April 2017) DOI: 10.1016/S0140-6736(17)30752-3

CAC distribution is flat!

The Lancet 2017 389, 1730-1739DOI: (10.1016/S0140-6736(17)30752-3) Copyright © 2017 Elsevier Ltd <u>Terms and Conditions</u>

	40–44 years (n=31)	45–54 years (n=298)	55–64 years (n=204)	65–74 years (n=124)	75+ years (n=48)	Total (n=705)	p value	
Anthropometry								
Proportion of men (%)	50 (0·5)	50 (0.5)	50 (0·5)	50 (0.5)	40 (0.5)	50 (0.5)	0.6301	
Mean weight (kg)	58-8 (9-0)	60.3 (9.0)	58.5 (10.9)	56-2 (9-5	52.1 (9.5)	58-4 (9-9)	<0.0001	
Height (cm)	157-4 (7-5)	157-2 (7-0)	154.9 (8.0)	154-5 (8-3)	151-2 (8-3)	155.7 (7.8)	<0.0001	
Rody-mass index (ka/m²)	22.7 (2.0)	24.4 (2.1)	24.4 (4.1)	22.E (2.2)	22.6 (2.8)	21.1 (2.E)	0.0220	

	40–44 yea (n=31)		45–54 year (n=298)		5–64 years =204)	65-74 years (n=124)		75+ years (n=48)	Total (n=705)	p value
Anthropometry										
Proportion of men (%)	50 (0-5)	50 (0.5)		50 (0.5)	50 (0	D·5)	40 (0.5)	50 (0.5)	0.6301
Mean weight (kg)	58·8 (9	·0)	60-3 (9-	0)	58.5 (10.9)	56-2	(9-5	52.1 (9.5)	58-4 (9-9)	<0.0001
Height (cm)	157·4 (7	5)	157-2 (7-	0)	154.9 (8.0)	154-5	(8-3)	151-2 (8-3)	155.7 (7.8)	<0.0001
Body-mass index (kg/m²)	23·7 (3·	0)	24·4 (3·	1)	24.4 (4.1)	23.5	(3·3)	22.6 (2.8)	24.1 (3.5)	0.0220
Body fat (%)	21.8%	(8·3)	21.9% (8·2)	22.8% (8.3)	21.7	% (8·4)	21.7% (6.5)	22.1% (8.2)	0.6726
Leucocyte count (cells per µL) 9642 (2222) Lymphocyte count (cells per µL) 2673 (922) Esciescobil count (cells per µL) 1648 (1101)	2357 (718) 2497	(707)	9280 (2681) 2343 (770) 1271 (046)	9325 (2375) 2415 (657) 1142 (870)	9199 (2368) 2414 (733) 1278 (087)	0-4800 0-0690				
Proportions above high-risk c	utoffs									
Body-mass index > 30 kg/ m²	0.03 (0-03)	0.05 (0	0-01)	0.10 (0.02)	0-0	3 (0.02)	0.02 (0.02)	0.06 (0.01)	0.0670
Hypertensive*	0.10 (0.05)	0-04 ((D-01)	0.05 (0.02)	0-0	6 (0.02)	0.08 (0.04)	0.05 (0.01)	0.5306
Total cholesterol >6·2 mmol/L	0.00 (0.00)	0.00 (0	0.00)	0.01 (0.01)	0-0	1 (0-01)	0.00 (0.00)	0.00 (0.00)	0.4710
LDL cholesterol >3·4 mmol/L	0.11 (0.06)	0-09 ((0-02)	0.10 (0.02)	0.1	1 (0-03)	0.02 (0.02)	0.09 (0.01)	0.4875
Triglycerides >2·3 mmol/L	0.03 (0-03)	0.05 (0	0-01)	0.05 (0.02)	0-0	3 (0.02)	0.00 (0.00)	0.04 (0.01)	0.6010
HDL cholesterol <1·0 mmol/L	0.61(0.09)	0.57 (0	0.03)	0.55 (0.03)	0.5	3 (0-04)	0.57 (0.07)	0.56 (0.02)	0.9460
Glucose >6∙9 mmol/L	0.00 (0.00)	0.00 (0	0.00)	0.01 (0.01)	0-0	1 (0.01)	0.00 (0.00)	0.00 (0.00)	0.6330
Leucocytes>10700 cells per µL	0.32 (0-08)	0.21 (0	0·02)	0.24 (0.03)	0-2	5 (0·04)	0.22 (0.06)	0.23 (0.02)	0.5780
Elevated ESR†	0.30 (0.08)	0.27 (0)·03)	0.25 (0.03)	0-2	5 (0.04)	0.41 (0.07)	0.27 (0.02)	0.3390
hs-CRP>3·0 mg/L	0.43 (0-09)	0.48 (0-03)	0.46 (0.03)	0.5	5 (0.04)	0.45 (0.07)	0.48 (0.02)	0.5100

Data are mean (SD) or proportion (SE), unless otherwise specified. ApoA=apolipoprotein A. ApoB=apolipoprotein B. ESR=erythrocyte sedimentation rate. hs-CRP=high sensitivity C-reactive protein. Conversion factors from mmol/L to mg/dL: for total cholesterol, LDL, and HDL, multiply mmol/L by 38-67; for triglycerides, multiply mmol/L by 88-57; and for glucose, multiply mmol/L by 18-02.*Hypertension was defined as a systolic blood pressure of more than 140 mm Hg or a diastolic blood pressure of more than 90 mm Hg. †Elevated ESR was considered as higher than 22 mm/h for men and higher than 29 mm/h forwomen.

Table 1 Pacolino charactoristics by ac

70%+ carbs!

Original Article

Long-Term Effects of 4 Popular Diets on Weight Loss and Cardiovascular Risk Factors A Systematic Review of Randomized Controlled Trials

Renée Atallah, MSc; Kristian B. Filion, PhD; Susan M. Wakil, MD; Jacques Genest, MD; Lawrence Joseph, PhD; Paul Poirier, MD, PhD; Stéphane Rinfret, MD, SM; Ernesto L. Schiffrin, MD, PhD; Mark J. Eisenberg, MD, MPH

Typical wt loss is ~10 lbs in 1 yr...

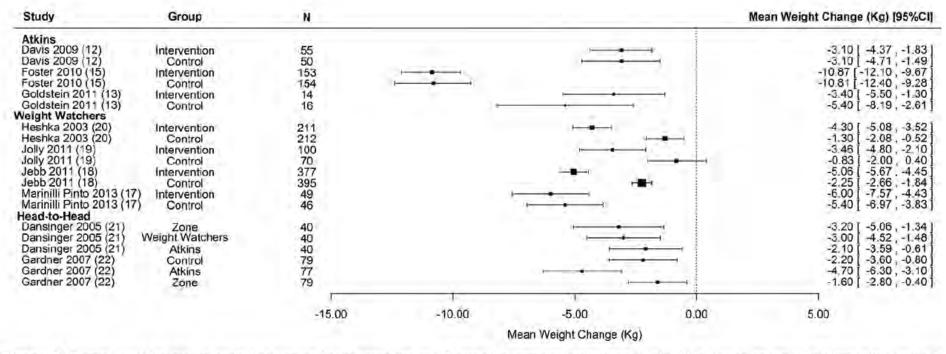


Figure 3. Forest plot for mean weight change from baseline to 12 months among long-term trials. N is the number of patients included in the 12-month analysis. CI indicates confidence interval.

SPECIAL FOCUS ISSUE: CARDIOVASCULAR HEALTH PROMOTION

THE PRESENT AND FUTURE: COUNCIL PERSPECTIVES

Trending Cardiovascular Nutrition Controversies

Andrew M. Freeman, MD,^a Pamela B. Morris, MD,^b Neal Barnard, MD,^c Caldwell B. Esselstyn, MD,^d Emilio Ros, MD, PHD,^e Arthur Agatston, MD,^f Stephen Devries, MD,^{g,h} James O'Keefe, MD,ⁱ Michael Miller, MD,^j Dean Ornish, MD,^k Kim Williams, MD,¹ Penny Kris-Etherton, PHD^m

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 69, NO. 9, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/J.jacc.2016.10.086

CENTRAL ILLUSTRATION Evidence for Cardiovascular Health Impact of Foods Reviewed

Summary of heart-harmful and heart-healthy foods/diets

Evidence of harm; limit or avoid

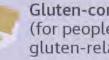
Inconclusive evidence; for harm or benefit

Virgin coconut oil

Coconut oil and palm oil are high in saturated fatty acids and raise cholesterol

Eggs have a serum cholesterol-raising effect

Juicing of fruits/vegetables with pulp removal increases caloric concentration*



Southern diets (added fats and oils, fried foods, eggs, organ and processed meats, sugar-sweetened drinks)

High-dose antioxidant supplements

Juicing of fruits/vegetables without pulp removal*

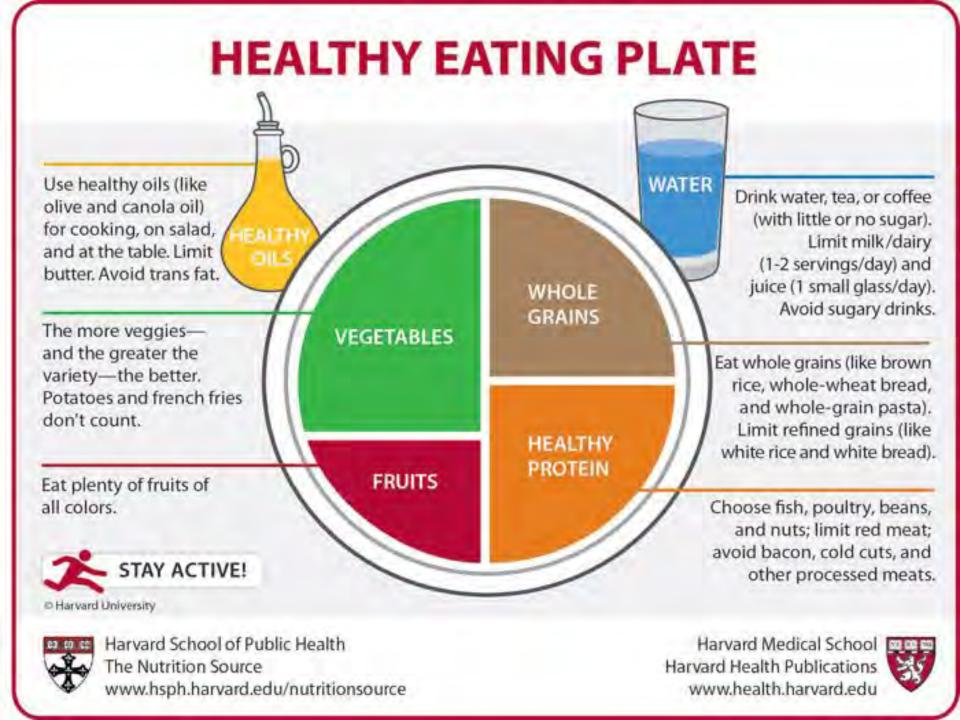
Gluten-containing foods (for people without gluten-related disease)

Evidence of benefit; recommended

Extra-virgin olive oil reduces some CVD outcomes when consumed in moderate quantities

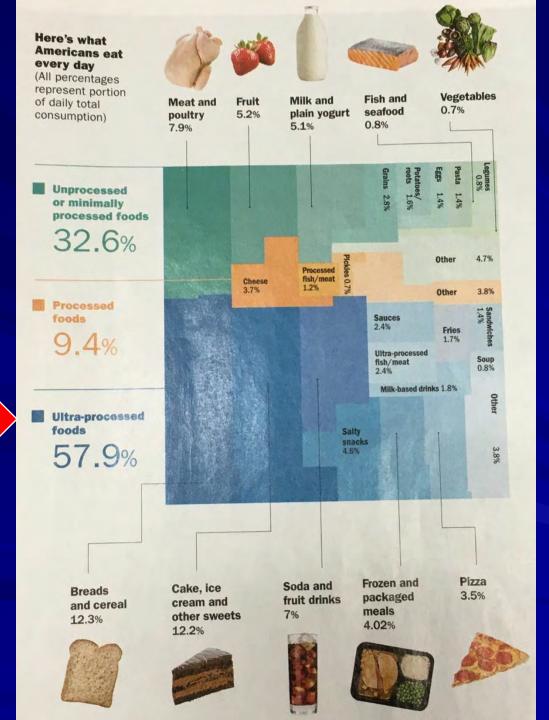
Blueberries and strawberries (>3 servings/week) induce protective antioxidants

30 g serving of nuts/day. Portion control is necessary to avoid weight gain.†


Green leafy vegetables have significant cardioprotective properties when consumed daily

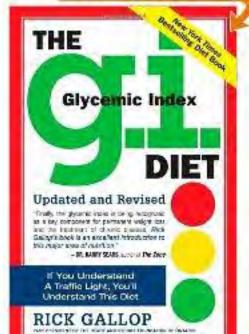
Plant-based proteins are significantly more heart-healthy compared to animal proteins

Freeman, A.M. et al. J Am Coll Cardiol. 2017;69(9):1172-87.


This figure summarizes the foods discussed in this paper that should be consumed often, and others that should be avoided from a cardiovascular health perspective. *It is important to note that juicing becomes less of a benefit if calorie intake increases because of caloric concentration with pulp removal. †Moderate quantities are required to prevent caloric excess.

S.A.D.

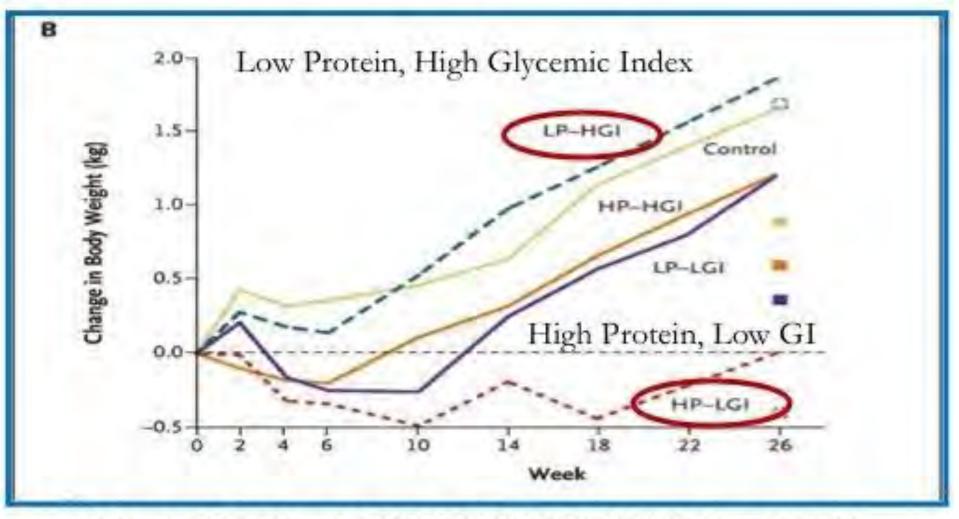
<u>Standard</u> <u>American</u> <u>Diet...</u>


What's better?

Best

ok

Click to LOOK INSIDE!


High GI (70 and above)

Medium GI (55 to 69)

Diets with High or Low Protein Content and Glycemic Index for Weight-Loss Maintenance

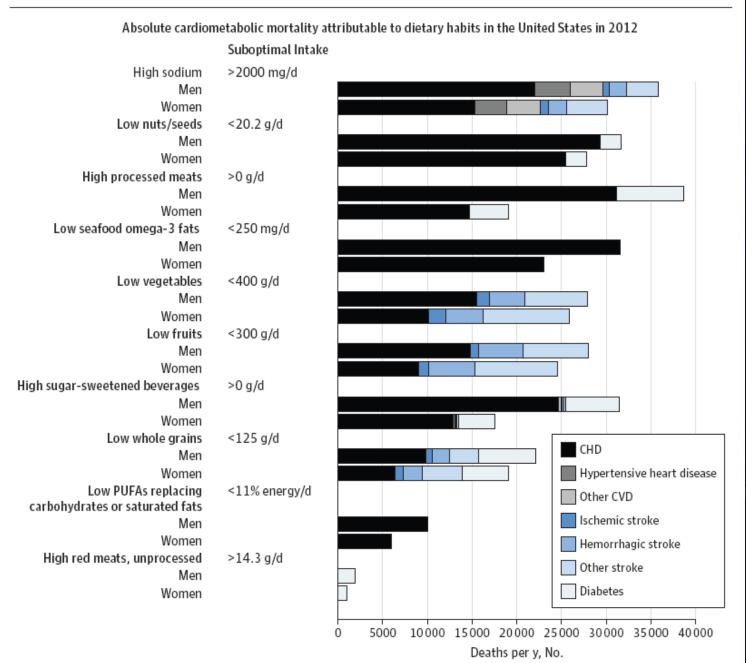
Thomas Meinert Larsen, Ph.D., Stine-Mathilde Dalskov, M.Sc., Marleen van Baak, Ph.D., Susan A. Jebb, Ph.D., Angeliki Papadaki, Ph.D.,

N Engl J Med Nov 25 2010, 363(22):2102-2113 Larsen TM

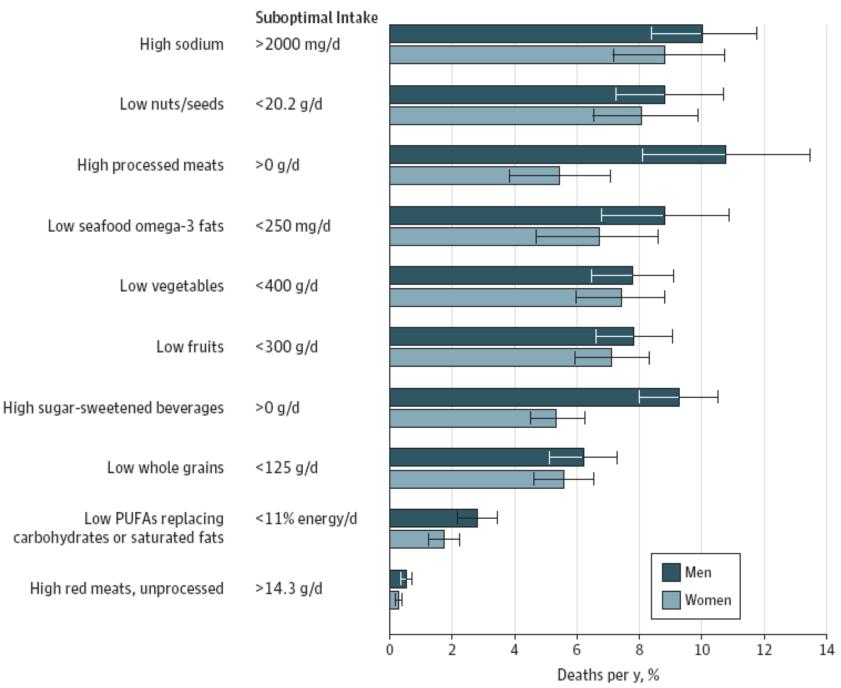
The Good...

Here's what Americans eat every day (All percentages	R	1	0			Cardon Contraction		Re-
represent portion of daily total consumption)	Meat and poultry 7.9%	Fruit 5.2%	Milk and plain yogurt 5.1%	Fish an seafoo 0.8%			eget	ables
Unprocessed or minimally processed foods				Grains 2.8%	Potatoes/ roots 1.6%	Eggs 1.4%	Pasta 1.4%	Legumes 0.8%
32.6%			Processed es			Oth	er	4.7%

JAMA | Original Investigation


Association Between Dietary Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States

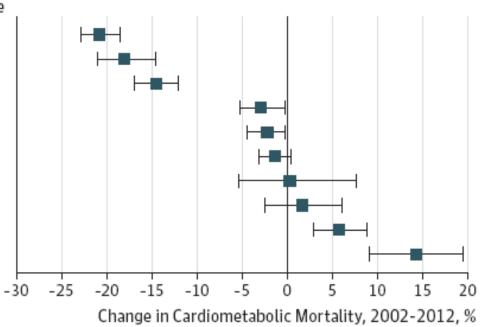
Renata Micha, RD, PhD; Jose L. Peñalvo, PhD; Frederick Cudhea, PhD; Fumiaki Imamura, PhD; Colin D. Rehm, PhD; Dariush Mozaffarian, MD, DrPH



JAMA. 2017;317(9):912-924. doi:10.1001/jama.2017.0947

Figure 1. Absolute and Proportional Cardiometabolic Disease Mortality Associated With Suboptimal Dietary Habits Among US Men and Women in 2012

Proportional cardiometabolic mortality attributable to dietary habits in the United States in 2012



Changing US Diet...

Figure 3. Change in Proportional Cardiometabolic Disease Mortality in the United States Between 2002 and 2012

	Suboptimatinta
PUFA for carbohydrates or saturated fats	<11% energy/d
Nuts/seeds	<20.2 g/d
Sugar-sweetened beverages	>0 g/d
Whole grains	<125 g/d
Fruits	<300 g/d
Vegetables	<400 g/d
Seafood omega-3 fats	<250 mg/d
Processed meats	>0 g/d
Sodium	>2000 mg
Red meats, unprocessed	>14.3 g/d

Suboptimal Intake

3, 4, 6, 8, and now 10...

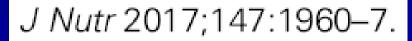
- 24% reduced risk of heart disease
- 33% reduced risk of stroke
- 28% reduced risk of cardiovascular disease
- 13% reduced risk of total cancer
- 31% reduction in dying prematurely
- 2.5 servings ~ 10% reduction

Aune et al. Int J of epid. 2017

Just another random cardiologist...

"There are two kinds of cardiologists: vegans and those who haven't read the data."

Dr. Kim Allan Williams, MD, FACC, FASNC, FAHA President, American College of Cardiology (2015) Chief of Cardiology, Rush University in Chicago Supplemental Material can be found at: http://jn.nutrition.org/content/suppl/2017/08/08/jn.117.25366 6.DCSupplemental.html



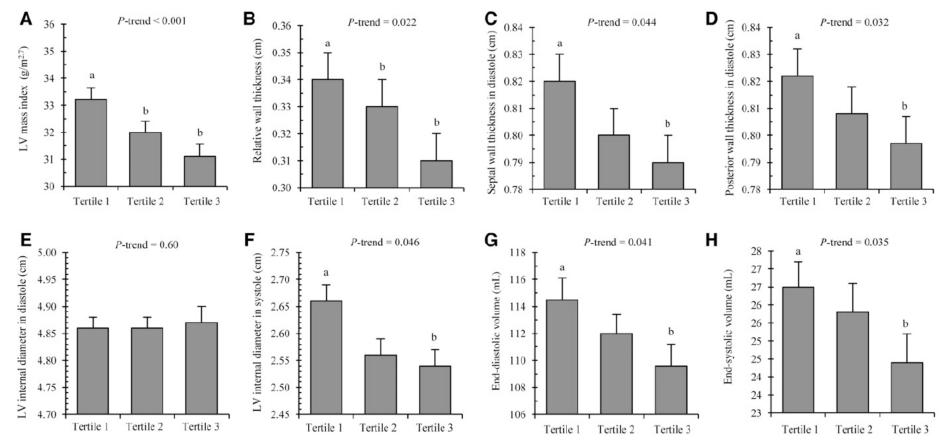
The Journal of Nutrition Nutritional Epidemiology

Phylloquinone Intake Is Associated with Cardiac Structure and Function in Adolescents

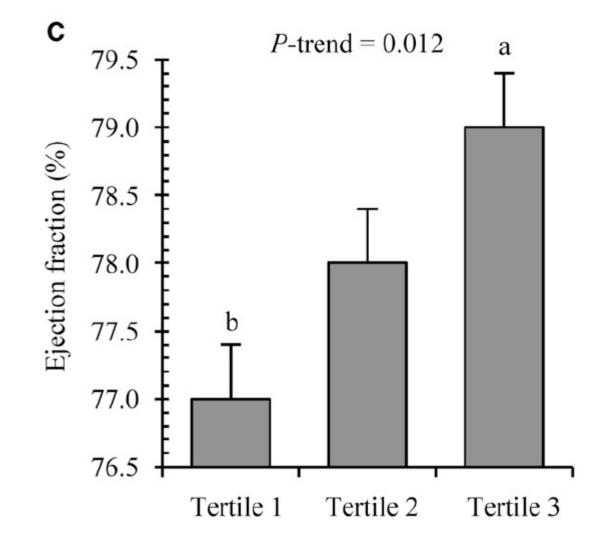
Mary K Douthit,¹ Mary Ellen Fain,¹ Joshua T Nguyen,¹ Celestine F Williams,¹ Allison H Jasti,¹ Bernard Gutin,¹ and Norman K Pollock¹⁻³

¹Georgia Prevention Institute, and Departments of ²Pediatrics and ³Physiology, Medical College of Georgia, Augusta University, Augusta, GA

		Phylloquinone intake ²		
	Tertile 1	Tertile 2	Tertile 3	P-trend ³
Age, y	16.1 ± 1.2	16.1 ± 1.2	16.2 ± 1.3	0.28
Females, ⁴ %	57	50	44	0.016
Blacks, ⁴ %	55	44	49	0.07
Tanner stage (I–V)	$4.7~\pm~0.6$	4.5 ± 0.7	$4.6~\pm~0.6$	0.16
Blood pressure, mm Hg				
Systolic	112 ± 10	111 ± 11	111 ± 10	0.60
Diastolic	60 ± 7	60 ± 6	60 ± 6	0.53
BMI percentile	62.8 ± 28.9	60.0 ± 28.6	58.2 ± 27.9	0.10
Fat-free soft tissue mass, kg	45.7 ± 9.7^{b}	45.9 ± 9.7	47.6 ± 9.9^{a}	0.020
Fat mass, kg	$17.7~\pm~10.9^{a}$	16.3 ± 10.5	15.0 ± 9.5^{b}	0.003
Socioeconomic status	32.8 ± 8.4	33.9 ± 9.0	34.4 ± 9.8	0.12
Moderate and vigorous physical activity, min/d	43.2 ± 29.8	42.5 ± 26.3	46.4 ± 30.7	0.25
Dietary intake				
Energy, kcal/d	$1630 \pm 463^{\circ}$	2010 ± 473^{b}	2230 ± 617^{a}	< 0.001
Protein, % of energy	14 ± 3	14 ± 3	14 ± 3	0.49
Carbohydrate, % of energy	54 ± 7	53 ± 6	53 ± 6	0.70
Fat, % of energy	32 ± 6	33 ± 5	33 ± 4	0.50
Fiber, g/d	$9.8~\pm~3.0^{\circ}$	10.8 ± 3.4^{b}	12.1 ± 5.1^{a}	< 0.001
Calcium, mg/d	739 ± 346	748 ± 310	747 ± 353	0.80
Vitamin C, mg/d	67.6 ± 38.6	68.4 ± 37.8	69.8 ± 24.4	0.54
Vitamin D, µg/d	4.0 ± 2.7	3.8 ± 2.6	4.0 ± 2.9	0.67
Sodium, mg/d	3210 ± 890	3320 ± 890	3310 ± 1020	0.07
Left ventricular hypertrophy,4 %	17	8	5	< 0.001


TABLE 1 Characteristics by tertile categories of phylloquinone intake in 766 adolescents aged 14–18 y¹

¹ Values are means \pm SDs unless othewise indicated. Values in a row without a common superscript letter differ, P < 0.05.


² Median (range) intakes of phylloquinone: tertile 1 = 32 μ g/d (8–42 μ g/d), n = 255; tertile 2 = 54 μ g/d (43–65 μ g/d), n = 255; and tertile 3 = 90 μ g/d (66–386 μ g/d), n = 256.

³ P-trend based on ANOVA with polynomial contrast.

⁴ Based on Mantel-Haenszel linear-by-linear association χ^2 test.

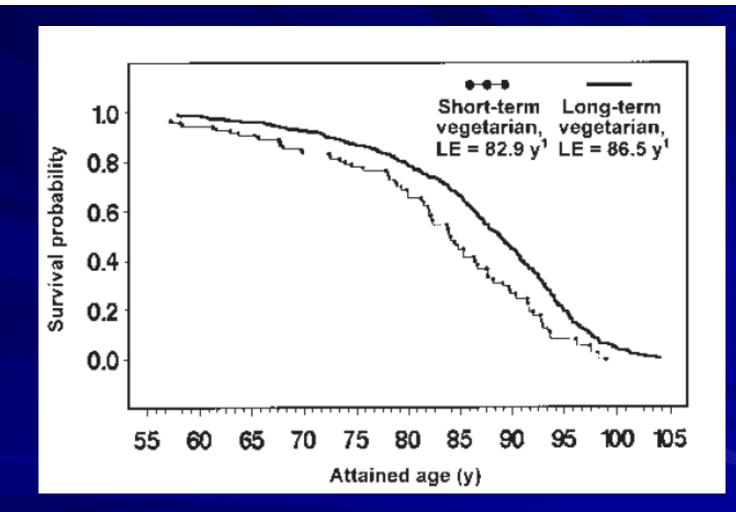

FIGURE 2 Cardiac structure variables, including LV mass index (A), relative wall thickness (B), septal wall thickness in diastole (C), posterior wall thickness in diastole (D), LV internal diameter in diastole (E), LV internal diameter in systole (F), end-diastolic volume (G), and end-systolic volume (H), across tertiles of daily phylloquinone intake in 766 adolescents aged 14–18 y. Median (range) intakes of phylloquinone were as follows: tertile 1 = 32 μ g/d (8–42 μ g/d), *n* = 255; tertile 2 = 54 μ g/d (43–65 μ g/d), *n* = 255; and tertile 3 = 90 μ g/d (66–386 μ g/d), *n* = 256. Values are adjusted means ± SEMs. Means were adjusted for age, sex, race, Tanner stage, systolic blood pressure, fat-free soft tissue mass, fat mass, socioeconomic status, moderate and vigorous physical activity, and dietary intakes of total energy, fiber, calcium, vitamin C, vitamin D, and sodium. Labeled means without a common lowercase letter differ, *P* < 0.05. LV, left ventricular.

FIGURE 3 Cardiac function variables, including endocardial fractional shortening (A), midwall fractional shortening (B), and ejection fraction (C), across tertiles of daily phylloquinone intake in 766 adolescents aged 14–18 y. Median (range) intakes of phylloquinone were as follows: tertile 1 = 32 μ g/d (8–42 μ g/d), *n* = 255; tertile 2 = 54 μ g/d (43–65 μ g/d), *n* = 255; and tertile 3 = 90 μ g/d (66–386 μ g/d), *n* = 256. Values are adjusted means ± SEMs. Means were adjusted for age, sex,

Does low meat consumption increase life expectancy in humans?^{1–3}

Pramil N Singh, Joan Sabaté, and Gary E Fraser

+3.6 years of life if eating meat < 1/wk.

Am J Clin Nutr 2003;78(suppl):526S-32S.

Direct comparison of a dietary portfolio of cholesterol-lowering foods with a statin in hypercholesterolemic participants^{1–3}

David JA Jenkins, Cyril WC Kendall, Augustine Marchie, Dorothea A Faulkner, Julia MW Wong, Russell de Souza, Azadeh Emam, Tina L Parker, Edward Vidgen, Elke A Trautwein, Karen G Lapsley, Robert G Josse, Lawrence A Leiter, William Singer, and Philip W Connelly

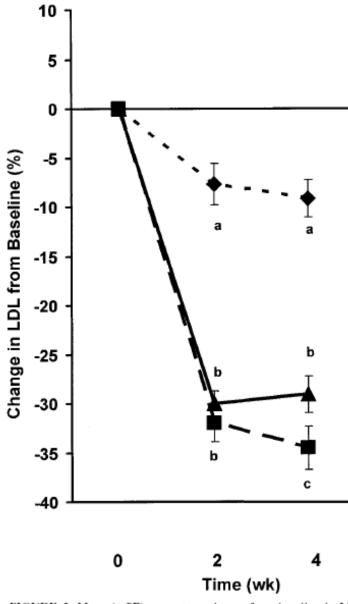
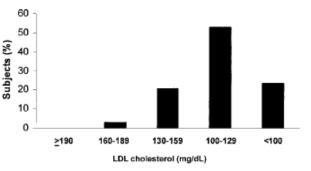



FIGURE 2. Mean (±SE) percentage change from baseline in LDLcholesterol concentrations with the portfolio (\blacktriangle ; n = 34), control (\diamondsuit ; n = 34), and statin (\blacksquare ; n = 34) diets. Data for the 3 time points were analyzed with a two-factor repeated-measures ANOVA, with interaction based on actual data and not on the change from baseline. The diet effect and the diet-by-time interaction were significant (P < 0.001). Values at the same time point with different lowercase letters are significantly different, P < 0.020 (paired comparison by least-squares-means procedures with Tukey's adjustment).

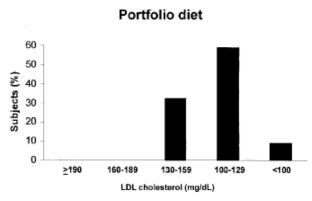
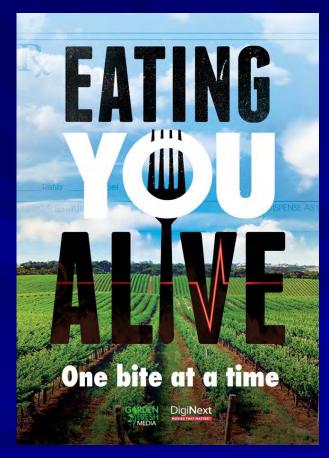
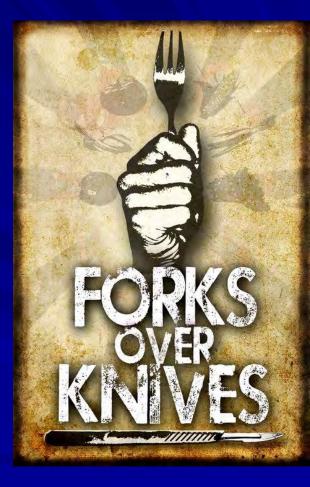


FIGURE 3. Percentages of the 34 subjects who achieved LDLcholesterol treatment goals for primary prevention (very high concentrations: >190 mg/dL; high concentrations: 160–189 mg/dL; borderline high concentrations: 130–159 mg/dL; near or above optimal concentrations: 100– 129 mg/dL; optimal concentrations: <100 mg/dL).

Vegan references

NATIONAL BESTSELLER


"Everyone in the field of nutrition science stands on the shoulders of Dr. Campbell, who is one of the giants in the field. This is one of the most important books about nutrition ever written reading it may save your life." -Dean Ornish, MD

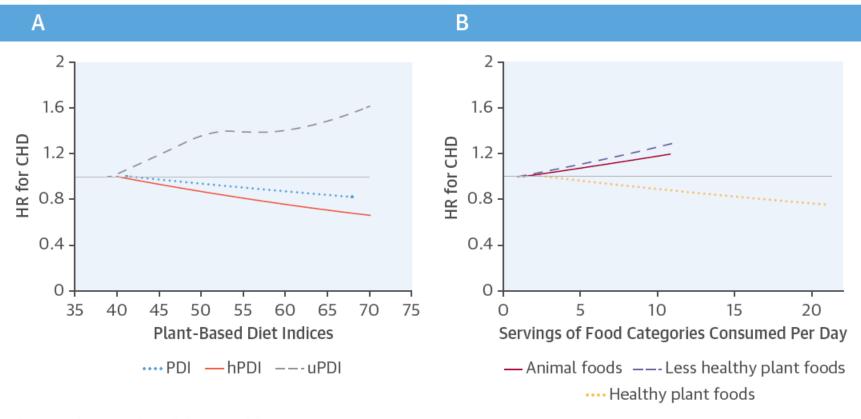

THE MOST COMPREHENSIVE STUDY OF NUTRITION EVER CONDUCTED

THE CHIN STUDY

STARTLING IMPLICATIONS FOR DIET, WEIGHT LOSS AND LONG-TERM HEALTH

T. COLIN CAMPBELL, PHD AND THOMAS M. CAMPBELL II FOREWORD BY JOHN ROBBINS, AUTHOR, DIET FOR A NEW AMERICA

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 70, NO. 4, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2017.05.047


ORIGINAL INVESTIGATIONS

Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults

Ambika Satija, ScD,^a Shilpa N. Bhupathiraju, PHD,^{a,b} Donna Spiegelman, ScD,^{a,b,c,d,e} Stephanie E. Chiuve, ScD,^{a,f} JoAnn E. Manson, MD, DRPH,^{c,g,h} Walter Willett, MD, DRPH,^{a,b,c} Kathryn M. Rexrode, MD, MPH,ⁱ Eric B. Rimm, ScD,^{a,b,c} Frank B. Hu, MD, PHD^{a,b,c}

CENTRAL ILLUSTRATION Dose-Response Relationship of Plant-Based Diet Indices and Animal, Healthy Plant, and Less Healthy Plant Foods With CHD Incidence

Satija, A. et al. J Am Coll Cardiol. 2017;70(4):411-22.

Analysis of the dose-response relationship of **(A)** the plant-based diet indices and **(B)** animal, healthy plant, and less healthy plant foods with CHD incidence was carried out after combining all 3 cohorts. Adjusted for age, smoking status, physical activity, alcohol intake, multivitamin use, aspirin use, family history of coronary heart disease (CHD), margarine intake, baseline hypertension, hypercholesterolemia, and diabetes, and updated body mass index. Also adjusted for post-menopausal hormone use in NHS (Nurses' Health Study) and NHS2 and for oral contraceptive use in NHS2. Energy intake was additionally adjusted when analyzing the plant-based diet indices. The 3 plant-based diet indices were examined in separate models. The 3 food categories (healthy and less healthy plant foods, and animal foods) were simultaneously included in the same model. For the unhealthful plant-based diet index (uPDI), p for test of curvature = 0.01 and p for nonlinear association is <0.001. The p values for test of curvature for overall plant-based diet index (PDI) = 0.25, for healthful plant-based diet index (hPDI) = 0.82, for animal foods = 0.58, for healthy plant foods = 0.99, and for less healthy plant foods = 0.74. The p values for linearity = 0.004 for animal foods, 0.001 for PDI, and <0.001 for hPDI, less healthy plant foods, and healthy plant foods. HR = hazard ratio.

FIGURE 1 Pooled HR (95% CI) for CHD Comparing Extreme Deciles of the Plant-Based Diet Indices, Stratified by Selected Characteristics

	hPD	1			uPDI			
		HR (95% CI)	P Trend	P Interaction		HR (95% CI)	P Trend	P Interaction
Age <55 years		0.59 (0.43-0.82)	<0.001	0.29		1.82 (1.33-2.47)	0.001	0.25
Age ≥55 years		0.76 (0.69-0.85)	<0.001	0.29		1.27 (1.14-1.42)	<0.001	0.25
Family history of CHD		0.80 (0.64-0.99)	0.02	0.46	—	1.24 (1.00-1.53)	0.09	0.67
No family history of CHD	-	0.74 (0.66-0.83)	<0.001	0.40		1.35 (1.20-1.51)	<0.001	0.07
Physical activity <median mets="" td="" week<=""><td></td><td>0.80 (0.70-0.91)</td><td>0.001</td><td>0.000</td><td></td><td>1.19 (1.05-1.36)</td><td>0.03</td><td>0.000</td></median>		0.80 (0.70-0.91)	0.001	0.000		1.19 (1.05-1.36)	0.03	0.000
Physical activity ≥median METs/week		0.66 (0.56-0.77)	<0.001	0.002		1.56 (1.32-1.85)	<0.001	0.002
BMI <30 kg/m²	-	0.72 (0.64-0.80)	<0.001	0.17	—	1.27 (1.13-1.43)	<0.001	0.86
BMI ≥30 kg/m²		0.84 (0.66-1.05)	0.05	0.17		1.38 (1.11-1.72)	0.06	0.80
Ever smokers	-	0.66 (0.58-0.75)	<0.001	0.19		1.42 (1.25-1.62)	<0.001	0.04
Never smokers		0.78 (0.66-0.92)	<0.001	0.19		1.30 (1.10-1.52)	<0.001	0.04
Women	-	0.64 (0.55-0.74)	<0.001	0.18		1.60 (1.37-1.87)	<0.001	0.41
Men		0.84 (0.73-0.96)	<0.001	0.15		1.18 (1.03-1.35)	0.01	0.41
0	0.5 1	1.5 2 Hazard	2.5 d Ratio (95	0 0.5 % Confidence Interval)	1 1.5 2 2.5			

The hazard ratios (HRs) and p values for men and women were obtained after combining all 3 cohorts. All other HR and p values were obtained by pooling estimates from the 3 cohorts using a fixed-effects model. Adjusted for age, smoking status, physical activity, alcohol intake, multivitamin use, aspirin use, family history of coronary heart disease (CHD), margarine intake, energy intake, baseline hypertension, hypercholesterolemia, and diabetes, and updated body mass index. Also adjusted for post-menopausal hormone use in NHS (Nurses' Health Study) and NHS2 and for oral contraceptive use in NHS2. BMI = body mass index; CI = confidence interval; hPDI = healthful plant-based diet index; MET = metabolic equivalent task; uPDI = unhealthful plant-based diet index.

Original Investigation

Vegetarian Dietary Patterns and Mortality in Adventist Health Study 2

Michael J. Orlich, MD; Pramil N. Singh, DrPH; Joan Sabaté, MD, DrPH; Karen Jaceldo-Siegl, DrPH; Jing Fan, MS; Synnove Knutsen, MD, PhD; W. Lawrence Beeson, DrPH; Gary E. Fraser, MBchB, PhD

Table 3. Age-Sex-Race Standardized Mortality Rates Among 73 308 Adventist Health Study 2 Participants According to Dietary Pattern

Characteristic	No. of People	Time, Person-years	Mean Time, y	Deaths	Death Rate, Deaths/1000 Person-years (95% CI)ª	P Value ^b
Vegetarian ^c						
Vegan	5548	32 810.3	5.92	197	5.40 (4.62-6.17)	.009
Lacto-ovo	21177	124660.5	5.88	815	5.61 (5.21-6.01)	.001
Pesco	7194	41 225.7	5.73	251	5.33 (4.61-6.05)	.004
Semi	4031	23 714.6	5.86	160	6.16 (5.03-7.30)	.30
Nonvegetarian	35 359	202 098.4	5.72	1147	6.61 (6.21-7.03)	
All participants	73 308	424 509.4	5.79	2570	6.05 (5.82-6.29)	

^a Adjusted for age, race, and sex by direct standardization.

^b From *Z* tests that test null hypotheses of no difference from the nonvegetarian death rate.

^c Dietary pattern classified after multiple imputation of missing values. Values

for number of people, person time, mean time, deaths, and death rate represent the mean of values from 5 imputed data sets; thus, summed values for number of people, person-time, and deaths may not equal the value for all participants.

JAMA Intern Med. 2013;173(13):1230-1238. doi:10.1001/jamainternmed.2013.6473 Published online June 3, 2013. Table 4. Associations of Dietary Patterns With All-Cause and Cause-Specific Mortality From a Cox Proportional Hazards Regression Model Among Participants in the Adventist Health Study 2, 2002-2009

		De	eaths, Hazard Ratio (95% Cl)	
		Ischemic Heart	Cardiovascular	6	0.1
Characteristic	All-Cause	Disease	Disease	Cancer	Other
All (N = 73 308), No. of deaths ^{a,b}	2560	372	987	706	867
Vegetarian					
Vegan	/`	/`	/	/	.74 (0.56-0.99)
Lacto-ov					.91 (0.77-1.07)
Pesco					.71 (0.54-0.94)
Semi					.99 (0.72-1.36)
Nonvegetar					1 [Reference]
Men (n = 25 1					368
Vegetarian					
Vegan	The second s	Charles Street on the			.81 (0.53-1.22)
Lacto-ov	COLUMN ANY		1186 77	6	.89 (0.69-1.15)
Pesco		(All the second s		and the second	.60 (0.39-0.93)
Semi Semi	TI	WHAT THE PARTY OF	A CONTRACTOR OF THE REAL	Contra Section	.03 (0.62-1.71)
Nonvegetar	3 14		1947	E.	1 [Reference]
Women (n = 4	J.D.	and a strend of a sea	-	100 CONT 1	499
Vegetarian				100	
Vegan		-	5		.70 (0.47-1.05)
Lacto-ov					.93 (0.75-1.17)
Pesco					.81 (0.58-1.15)
Semi					.97 (0.64-1.47)
Nonvegetar					1 [Reference]
^a Adjusted by a					(≤4 h/night, 5

smoking (curi

years, quit 20-29 years, quit ≥30 years, and never smoked), exercise (none, \leq 20 min/week, 21-60 min/week, 61-150 min/week, and \geq 151 min/week), personal income (≤\$20 000/y, >\$20 000-\$50 000/y, >\$50 000-\$100 000/y, and >\$100 000/y), educational level (up to high school graduate, trade school/some college/associate degree, bachelor degree, and graduate degree), marital status (married/common-law and single/widowed/divorced/separated), alcohol (nondrinker, rare drinker [<1.5 servings/mo], monthly drinker [1.5 to <4 servings/mo], weekly drinker [4 to <28 servings/mo], and daily drinker [≥28 servings/mo]), region (West,

^b Also adjusted by sex (male and female), menopause (in women) (premenopausal [including perimenopausal], postmenopausal), and hormone therapy (in postmenopausal women) (not taking hormone therapy, taking hormone therapy).

^c Also adjusted by menopause (premenopausal [including perimenopausal], postmenopausal) and hormone therapy (postmenopausal women) (not taking hormone therapy, taking hormone therapy).

Think about it: Heart disease and diabetes, which account for more deaths in the U.S. and worldwide than everything else combined, are completely preventable by making comprehensive lifestyle changes. Without drugs or surgery.

— Dean Ornish —

AZQUOTES

THE ORNISH NUTRITION ELEMENT

...IS HIGH IN GOOD CARBS GOOD FATS GOOD PROTEINS ...AND LOW IN BAD CARBS BAD FATS BAD PROTEINS

WE EMPHASIZE REAL FOODS AS THEY'RE FOUND IN NATURE RATHER THAN PROCESSED FOODS.

15% fats

Newsflash, Newsflash, Newsflash...

 \equiv specialties quizzes contact subscribe advertise store app wiki

Breaking: Iron Man Diagnosed with Hemochromatosis

You are what you eat...

Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study

Arash Etemadi, Rashmi Sinha, Mary H Ward, Barry I Graubard, Maki Inoue-Choi, Sanford M Dawsey, Christian C Abnet

Red meat	Hazard ratio (95% CI)	White meat	Hazard ratio (95% CI)	Meat compounds	Hazard ratio (95% Cl)
All causes of death	(95 % CI)	All causes of death	(95 % CI)	All causes of death	(95 % CI)
Total red meat	+	Total white meat	-	Heme iron	+
Processed	+	Processed	-	Nitrate	-
Unprocessed	+	Unprocessed	+	Nitrite	+
Cancer		Cancer		Cancer	
Total red meat	+	Total white meat	+	Heme iron	-
Processed	+	Processed		Nitrate	-
Unprocessed	+	Unprocessed	+	Nitrite	-
Heart disease		Heart disease		Heart disease	
Total red meat	+	Total white meat	+	Heme iron	
Processed	+	Processed		Nitrate	
Unprocessed	+	Unprocessed	+	Nitrite	
Respiratory diseases		Respiratory diseases		Respiratory diseases	
Total red meat		Total white meat		Heme iron	
Processed		Processed	-	Nitrate	
Unprocessed		Unprocessed		Nitrite	
Stroke		Stroke		Stroke	
Total red meat		Total white meat		Heme iron	
Processed -	-	Processed	-	Nitrate	
Unprocessed		Unprocessed		Nitrite	
Diabetes		Diabetes		Diabetes	
Total red meat		Total white meat		Heme iron	
Processed		Processed		Nitrate	
Unprocessed		Unprocessed		Nitrite	
Infections		Infections		Infections	
Total red meat		Total white meat		Heme iron	
Processed		Processed		Nitrate	
Unprocessed	_	Unprocessed		Nitrite	
Alzheimer's disease		Alzheimer's disease		Alzheimer's disease	
Total red meat 🔫		Total white meat		Heme iron	
Processed 🚽	_	Processed		Nitrate	
Unprocessed 🚽	+	Unprocessed		Nitrite	
Kidney disease		Kidney disease		Kidney disease	
Total red meat		Total white meat		Heme iron	
Processed		Processed		Nitrate	
Unprocessed		Unprocessed		Nitrite	
Liver disease		Liver disease		Liver disease	
Total red meat		Total white meat		Heme iron	
Processed		Processed		Nitrate	
Unprocessed		Unprocessed		Nitrite	
Others/unknown		Others/unknown		Others/unknown	
Total red meat		Total white meat	+	Heme iron	
Processed	+	Processed		Nitrate	
Unprocessed	-	Unprocessed	+	Nitrite	
0.9	1.0 1.2 1.4 1.6 2.0 2	.6 0.	3 0.5 0.75 1.0 1.2	25 0.	.8 1.0 1.2 1.4 1.6

Fig 1 | Association between intake of different types of red meat, different types of white meat, and meat associated compounds and mortality in NIH-AARP Diet and Health Study, using substitution models. Point estimates are highest versus lowest fifth hazard ratios, and lines represent 95% CIs in adjusted models. Detailed results are shown in supplementary table A. Models were adjusted for sex, age at entry to study, marital status, ethnicity, education, fifths of composite deprivation index, perceived health at baseline, history of heart disease, stroke, diabetes, and cancer at baseline, smoking history, body mass index, vigorous physical activity, usual activity throughout day, alcohol consumption, fruit and vegetable intakes, total energy intake, and total meat intake (only in red and white meat models)

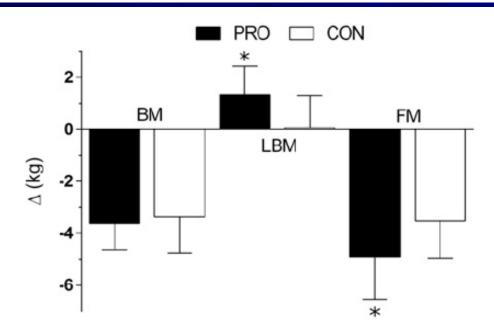
Intestinal microbiota metabolism of *L*-carnitine, a nutrient in red meat, promotes atherosclerosis

Robert A. Koeth^{1,2}, Zeneng Wang^{1,2}, Bruce S. Levison^{1,2}, Jennifer A. Buffa^{1,2}, Elin Org³, Brendan T. Sheehy¹, Earl B. Britt^{1,2}, Xiaoming Fu^{1,2}, Yuping Wu⁴, Lin Li^{1,2}, Jonathan D. Smith^{1,2,5}, Joseph A. DiDonato^{1,2}, Jun Chen⁶, Hongzhe Li⁶, Gary D. Wu⁷, James D. Lewis^{6,8}, Manya Warrier⁹, J. Mark Brown⁹, Ronald M. Krauss¹⁰, W. H. Wilson Tang^{1,2,5}, Frederic D. Bushman⁵, Aldons J. Lusis³, and Stanley L. Hazen^{1,2,5}

Nat Med. 2013 May ; 19(5): 576–585. doi:10.1038/nm.3145.

Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk

Weifei Zhu,^{1,7} Jill C. Gregory,^{1,7} Elin Org,² Jennifer A. Buffa,¹ Nilaksh Gupta,¹ Zeneng Wang,¹ Lin Li,¹ Xiaoming Fu,¹ Yuping Wu,⁵ Margarete Mehrabian,² R. Balfour Sartor,³ Thomas M. McIntyre,¹ Roy L. Silverstein,⁴ W.H. Wilson Tang,^{1,6} Joseph A. DiDonato,¹ J. Mark Brown,¹ Aldons J. Lusis,² and Stanley L. Hazen^{1,6,*}


> Zhu et al., 2016, Cell *165*, 1–14 March 24, 2016 ©2016 Elsevier Inc. http://dx.doi.org/10.1016/j.cell.2016.02.011

Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: a randomized trial^{1,2}

Thomas M Longland, Sara Y Oikawa, Cameron J Mitchell, Michaela C Devries, and Stuart M Phillips*

Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Canada

FIGURE 2 Four-compartment model-derived changes in BM, LBM, and FM during the intervention in both PRO and CON groups; data were analyzed with the use of an unpaired *t* test. Values are means \pm SDs; *n* = 40 (20/group). *Significantly different from CON (*P* < 0.05). BM, body mass; CON, lower-protein (1.2 g \cdot kg⁻¹ \cdot d⁻¹) control diet; FM, fat mass; LBM, lean body mass; PRO, higher-protein (2.4 g \cdot kg⁻¹ \cdot d⁻¹) diet.

Am J Clin Nutr doi: 10.3945/ajcn.115.119339.

Long term gluten consumption in adults without celiac disease and risk of coronary heart disease: prospective cohort study

Benjamin Lebwohl,^{1,2} Yin Cao,^{3,4,5} Geng Zong,⁵ Frank B Hu,^{5,6} Peter H R Green,¹ Alfred I Neugut,^{1,2} Eric B Rimm,^{5,6,7} Laura Sampson,⁵ Lauren W Dougherty,⁵ Edward Giovannucci,^{5,6,7} Walter C Willett,^{5,6,7} Qi Sun,^{5,6} Andrew T Chan^{3,4,6}

Cite this as: *BMJ* 2017;357:j1892 http://dx.doi.org/10.1136/bmj.j1892

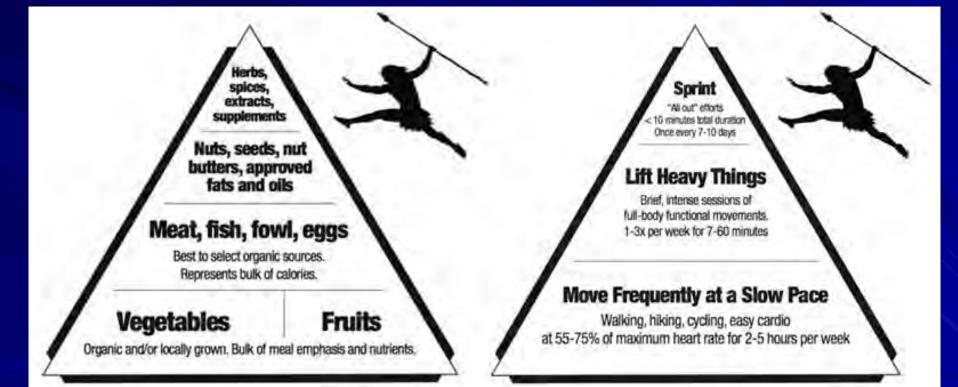
Table 3 Gluten and risk of coronary h	eart disease (fatal	and non-fatal myocar	rdial infarctions)				
	Fifth of energy ad	Fifth of energy adjusted gluten intake					
	1 (lowest)	2	3	4	5 (highest)	P for trend	
Nurses' Health Study							
Mean; median (range) gluten intake, g/d	2.6; 2.8 (0-3.4)	3.8; 3.8 (3.4-4.3)	4.7; 4.7 (4.3-5.1)	5.6; 5.6 (5.1-6.2)	7.5; 7.1 (6.2-26.7)	_	
No of events	492	470	494	471	504	_	
Person years	246 539	280 655	290 265	296789	293 279	-	
Incidence per 100 000 person years	200	167	170	159	172	-	
Age adjusted HR (95% CI)	1.0 (reference)	0.88 (0.77 to 1.00)	0.90 (0.80 to 1.02)	0.84 (0.74 to 0.96)	0.89 (0.79 to 1.01)	0.08	
Multivariable adjusted HR (95% CI)*	1.0 (reference)	0.97 (0.86 to 1.10)	1.02 (0.90 to 1.16)	0.97 (0.85 to 1.10)	1.00 (0.88 to 1.14)	0.98	
Full model HR (95% CI)†	1.0 (reference)	0.96 (0.85 to 1.10)	1.02 (0.90 to 1.16)	0.96 (0.84 to 1.09)	1.01 (0.89 to 1.15)	0.92	
Health Professionals Follow-up Study							
Mean; median (range) gluten intake, g/d	3.3; 3.5 (0-4.3)	4.9; 4.9 (4.3-5.5)	6.0; 6.0 (5.5-6.6)	7.3; 7.3 (6.6-8.1)	10.0; 9.4 (8.1-38.4)	_	
No of events	930	768	849	756	795	-	
Person years	157 910	172 630	179 552	180 670	175 641	-	
Incidence per 100 000 person years	589	445	473	418	453	-	
Age adjusted HR (95% CI)	1.0 (reference)	0.81 (0.74 to 0.89)	0.89 (0.81 to 0.98)	0.80 (0.73 to 0.89)	0.88 (0.80 to 0.97)	0.02	
Multivariable adjusted HR (95% CI)*	1.0 (reference)	0.86 (0.78 to 0.95)	0.96 (0.88 to 1.06)	0.89 (0.80 to 0.98)	0.98 (0.89 to 1.07)	0.78	
Full model HR (95% CI)†	1.0 (reference)	0.86 (0.78 to 0.94)	0.95 (0.87 to 1.05)	0.87 (0.79 to 0.96)	0.96 (0.87 to 1.05)	0.49	
Pooled							
No of events	1422	1238	1343	1227	1299	-	
Person years	404 450	453 285	469 817	477 459	468 920	_	
Incidence per 100 000 person years	352	27.2	286	257	277		
Age adjusted HR (95% CI)	1.0 (reference)	0.83 (0.77 to 0.90)	0.89 (0.83 to 0.96)	0.81 (0.75 to 0.87)	0.87 (0.80 to 0.93)	0.001	
Multivariable adjusted HK (95% CI)	1.0 (reference)	0.90 (0.83 to 0.97)	0.98 (0.91 to 1.06)	0.91 (0.84 to 0.98)	0.98 (0.91 to 1.06)	0.81	
Full model HR (95% CI)†	1.0 (reference)	0.88 (0.82 to 0.95)	0.96 (0.89 to 1.04)	0.88 (0.82 to 0.95)	0.95 (0.88 to 1.02)	0.29	
UD harmed and a							

HR=hazard ratio.

*Additionally adjusted for race, body mass index, height, history of diabetes, regular non-steroidal anti-inflammatory drug use, current use of multivitamin, alcohol intake (g/d), smoking (pack years), aspirin use, statin use, parental history of myocardial infarction, history of hypertension, history of hypercholesterolemia, physical activity (MET, h/wk), menopausal status (Nurses' Health Study only), and menopausal hormone use (Nurses' Health Study only).

†Above model additionally adjusted for trans fat, red meat, processed meat, polyunsaturated fats, fruits, and vegetables.

Whole grains are good for you!


Table 4 | Hazard ratios for coronary heart disease events by fifths of energy adjusted gluten intake, with additional adjustment for refined grains and whole grains (pooled cohorts)

	Fifth of energy adjusted gluten intake					
	1 (lowest)	2	3	4	5 (highest)	P for trend
Mean; median (range) gluten intake, g/d						
Nurses' Health Study	2.6; 2.8 (0-3.4)	3.8; 3.8 (3.4-4.3)	4.7; 4.7 (4.3-5.1)	5.6; 5.6 (5.1-6.2)	7.5; 7.1 (6.2-26.7)	-
Health Professionals Follow-up Study	3.3; 3.5 (0-4.3)	4.9; (4.9 (4.3-5.5)	6.0; 6.0 (5.5-6.6)	7.3; 7.3 (6.6-8.1)	10.0; 9.4 (8.1-38.4)	-
Model results						
No of events	1422	1238	1343	1227	1299	-
Person years	404 450	453 285	469 817	477 459	468 920	-
Incidence per 100000 person years	352	273	286	257	277	-
Multivariable adjusted HR (95% CI)* additionally adjusted for refined grains	1.0 (reference)	0.85 (0.79 to 0.92)	0.91 (0.84 to 0.98)	0.82 (0.75 to 0.89)	0.85 (0.77 to 0.93)	0.0 02
Multivariable adjusted HR (95% Cl)* additionally adjusted for whole grains	1.0 (reference)	0.89 (0.83 to 0.96)	0.98 (0.91 to 1.06)	0.91 (0.84 to 0.98)	1.00 (0.92 to 1.09)	0.77
Multivariable adjusted HR (95% CI)* additionally adjusted for refined grains	1.0 (reference)	0.85 (0.79 to 0.92)	0.91 (0.84 to 0.98)	0.82 (0.75 to 0.89)	0.85 (0.77 to 0.93)	

HR=hazard ratio.

*Adjusted for age, race, body mass index, height, history of diabetes, regular non-steroidal anti-inflammatory drug use, current use of multivitamin, alcohol intake (g/d), smoking (pack years), aspirin use, statin use, parental history of myocardial infarction, history of hypertension, history of hypercholesterolemia, physical activity (MET, h/wk), trans fat, red meat, processed meat, polyuns aturated fats, fruits, and vegetables.

What would Grok do?

Paleo = whole foods, plant based!

Ketogenics

THAT TRIATHLON SHOW | EP#44 LOW-CARB HIGH-FAT (LCHF) FOR ENDURANCE SPORTS WITH PROFESSOR TIM NOAKES

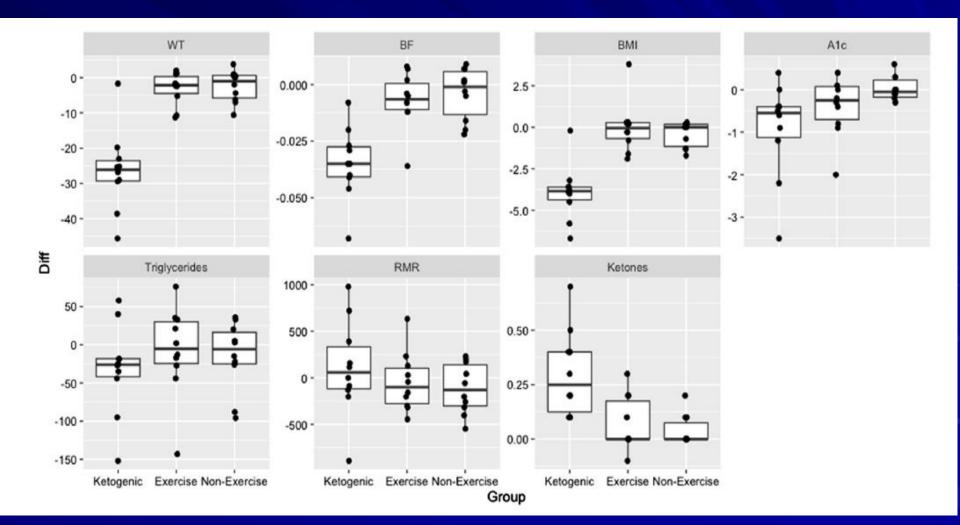
Low-carb high-fat (LCHF) for endurance sports with professor Tim Noakes | EP#44 A podcast presented by Scientific Triathlon

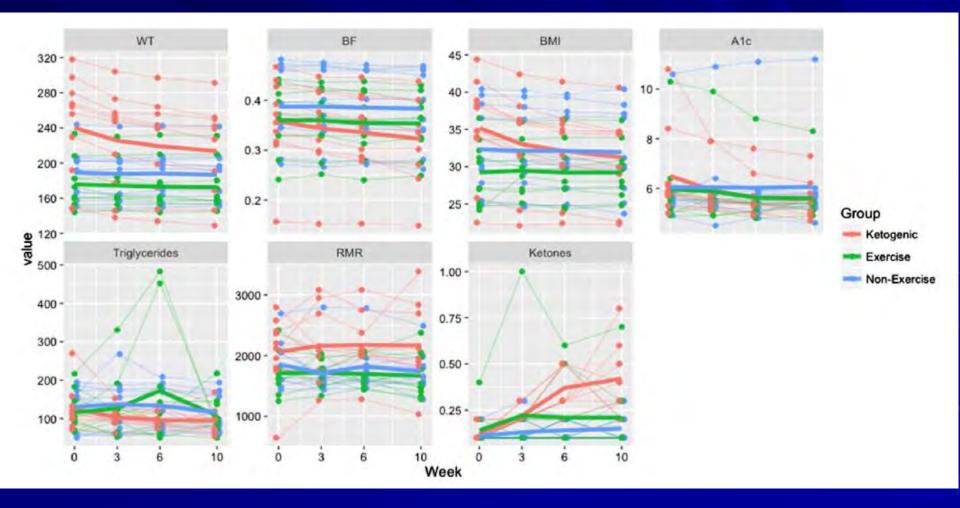
https://www.medscape.com/viewarticle/874707_1 Low carb, < 50 gm/day.

Burn FAT 10x FASTER!

Diabetes & Metabolic Syndrome: Clinical Research & Reviews 11S (2017) S385-S390

Original Article


Induced and controlled dietary ketosis as a regulator of obesity and metabolic syndrome pathologies


Madeline K. Gibas, Kelly J. Gibas*

Bethel University, MN, United States

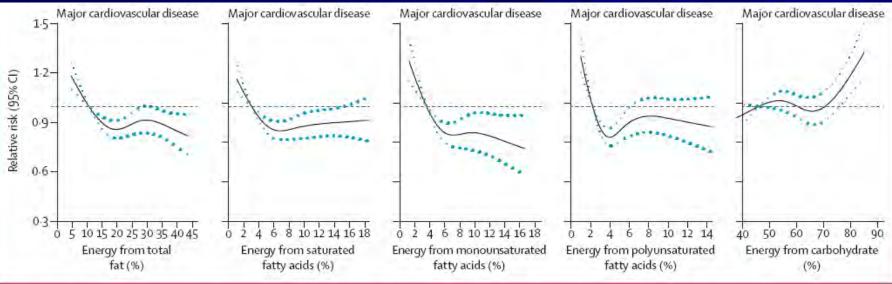
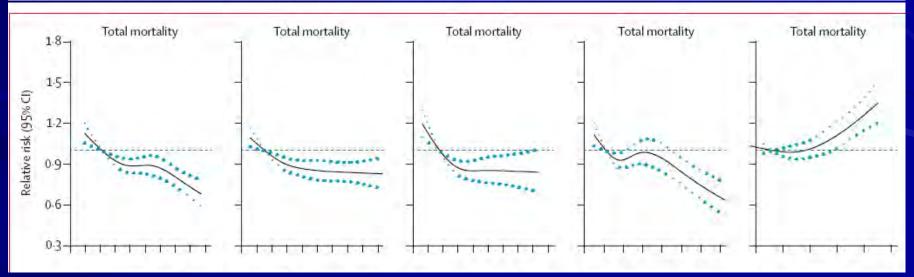
Grouped data

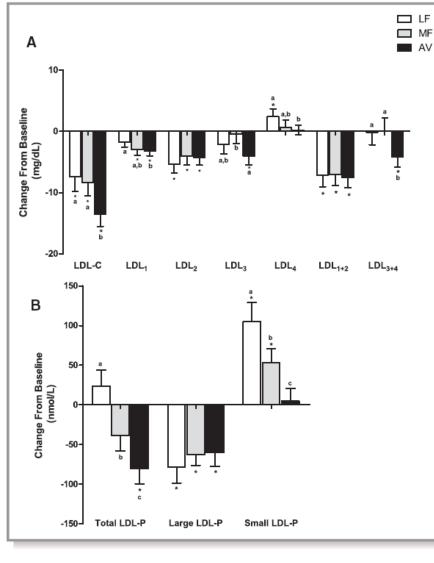
Individual data

Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study

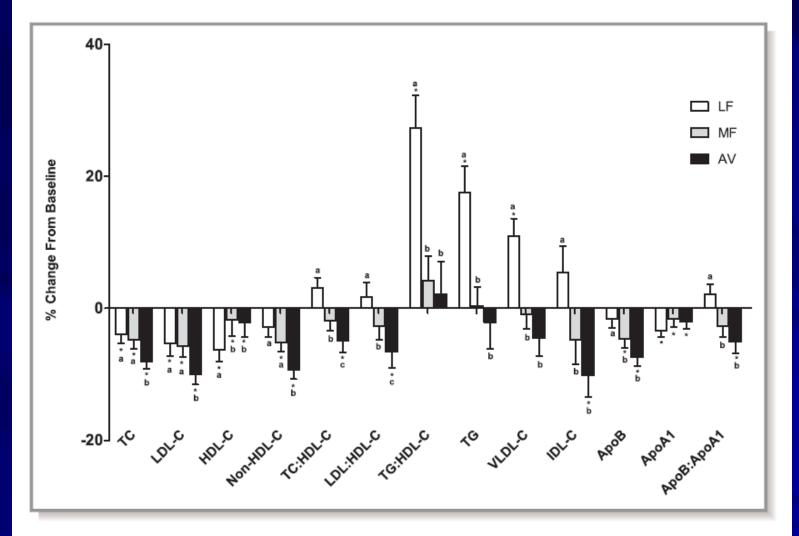
Mahshid Dehghan, Andrew Mente, Xiaohe Zhang, Sumathi Swaminathan, Wei Li, Viswanathan Mohan, Romaina Iqbal, Rajesh Kumar, Edelweiss Wentzel-Viljoen, Annika Rosengren, Leela Itty Amma, Alvaro Avezum, Jephat Chifamba, Rafael Diaz, Rasha Khatib, Scott Lear, Patricio Lopez-Jaramillo, Xiaoyun Liu, Rajeev Gupta, Noushin Mohammadifard, Nan Gao, Aytekin Oguz, Anis Safura Ramli, Pamela Seron, Yi Sun, Andrzej Szuba, Lungiswa Tsolekile, Andreas Wielgosz, Rita Yusuf, Afzal Hussein Yusufali, Koon K Teo, Sumathy Rangarajan, Gilles Dagenais, Shrikant I Bangdiwala, Shofiqul Islam, Sonia S Anand, Salim Yusuf, on behalf of the Prospective Urban Rural Epidemiology (PURE) study investigators^{*}

PURE confusion...


Figure 1: Association between estimated percentage energy from nutrients and total mortality and major cardiovascular disease (n=135335) Adjusted for age, sex, education, waist-to-hip ratio, smoking, physical activity, diabetes, urban or rural location, centre, geographical regions, and energy intake. Major cardiovascular disease=fatal cardiovascular disease+myocardial infarction+stroke+heart failure.

Effect of a Moderate Fat Diet With and Without Avocados on Lipoprotein Particle Number, Size and Subclasses in Overweight and Obese Adults: A Randomized, Controlled Trial


Li Wang, PhD; Peter L. Bordi, PhD; Jennifer A. Fleming, MS, RD; Alison M. Hill, PhD; Penny M. Kris-Etherton, PhD, RD

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT01235832. (J Am Heart Assoc. 2015;4: e001355 doi: 10.1161/JAHA.114.001355)

Figure 4. Change in LDL subclasses from baseline (mean \pm SEM). (A) Change in LDL subclasses cholesterol; (B) change in total, large and small LDL particle numbers. *Represents values that are significantly different from the baseline (*P*<0.05). Values with different letters (a, b, and c) are significantly different (Tukey posthoc test by SAS, *P*<0.05). AV indicates avocado diet; LDL-C, low-density lipoprotein cholesterol; LDL-P, low-density lipoprotein number; LF, lower-fat diet; MF, moderate-fat diet.

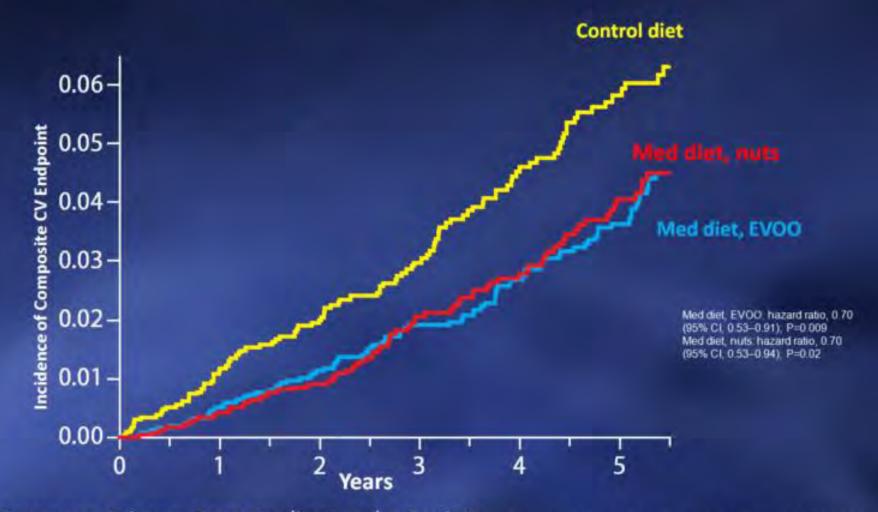


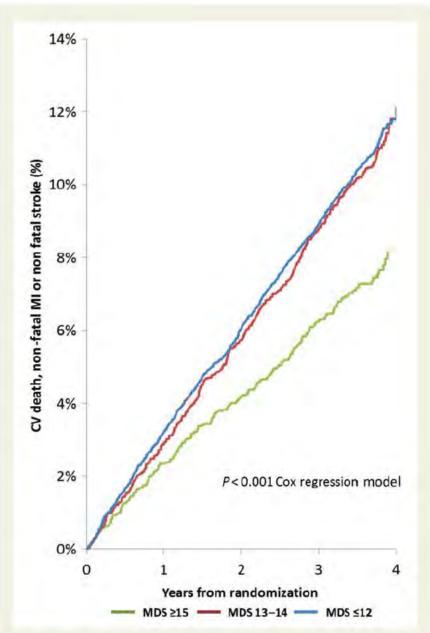
Figure 3. Percent change in lipids, lipoproteins, and apolipoproteins (mean \pm SEM) from baseline. *Represents values that are significantly different from the baseline (*P*<0.05). Values with different letters (a, b, and c) are significantly different (Tukey post-hoc test by SAS, *P*<0.05). AV indicates avocado diet; apoA1, apolipoprotein A1; apoB, apolipoprotein B; HDL-C, high-density lipoprotein cholesterol; IDL-C, intermediate-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LF, lower-fat diet; MF, moderate-fat diet; TC, total cholesterol; TG, triglycerides; VLDL, very-low-density lipoprotein.

PREDIMED: Primary Prevention of CVD with a Mediterranean Diet: Primary End Point

acute myocardial infarction, stroke, or death from cardiovascular causes

European Primary Care Cardiovascular Society

Estruch, R et al. N Engl J Med 2013.DOI:10.1056/NEJMoa1200303


European Heart Journal doi:10.1093/eurheartj/eł

Dietary patte cardiovascula patients with

Ralph A. H. Stewart¹* Emil Hagström², Clae Karen Chiswell⁶, Ola ' STABILITY Investigat

¹Green Lane Cardiovascular Service, Auckland Uppsala Clinical Research Center (UCR), Upp Université Paris Descartes, Paris, France; ⁴Medi McMaster University, Hamilton, ON, Canada; Therapeutic Area, GlaxoSmithKline, Research

Received 22 April 2015; revised 9 December 201

Figure 2 Kaplan-Meier plots of major adverse cardiovascular events by Mediterranean diet score group. CV, cardiovascular; MI, myocardial infarction, MDS, Mediteranean diet score.

LINICAL RESEARCH

Coronary artery disease

or adverse ly of high-risk lisease

:olas Danchin³, Inda Stebbins⁶, /hite¹, on Behalf of the

t; ²Department of Medical Sciences, Cardiology,
 ²ublique Hôpitaux de Paris, INSERM U-970,
 ³dicine and Population Health Research Institute,
 ³, and ⁷Metabolic Pathways and Cardiovascular

Effects of Sodium Reduction and the DASH Diet in Relation to Baseline Blood Pressure

Stephen P. Juraschek, MD, PHD,^{a,b} Edgar R. Miller, III, MD, PHD,^b Connie M. Weaver, PHD,^c Lawrence J. Appel, MD, MPH^b

CENTRAL ILLUSTRATION The BP Effects of the DASH Diet

FDA requirement for new antihypertensive drugs (13)

Angiotensin-converting enzyme inhibitors (12)

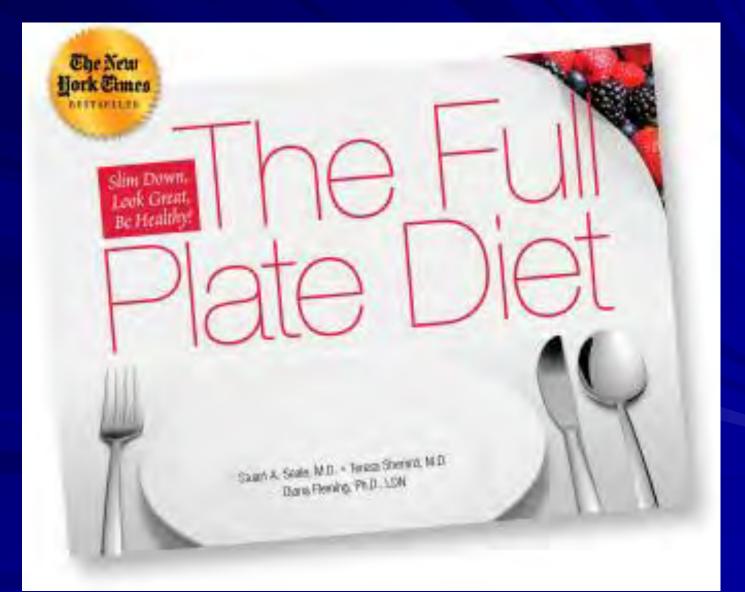
Beta blockers (12)

Calcium-channel blockers (12)

Sodium reduction (on a control diet) in participants with a baseline SBP ≥150 mm Hg

DASH versus control (at high sodium) in participants with a baseline SBP ≥150 mm Hg

DASH-low sodium (vs control-high sodium) in participants with a baseline SBP ≥150 mm Hg


Juraschek, S.P. et al. J Am Coll Cardiol. 2017; ∎(■): ■-■.

Sodium reduction, alone or combined, compared with average BP effects of antihypertensive drug therapies and the FDA requirement for new antihypertensive drugs. Estimates for antihypertensive drug classes are taken from Manisty et al. (12). The FDA requirement for new antihypertensive drugs is taken from a committee meeting of the Center for Drug Evaluation and Research (2014) (13). BP = blood pressure; DASH = Dietary Approaches to Stopping Hypertension; FDA = Food and Drug Administration; SBP = systolic blood pressure.

-25 -20 -15 -10 -5 0 5

Effect on Systolic Blood Pressure, mm Hg

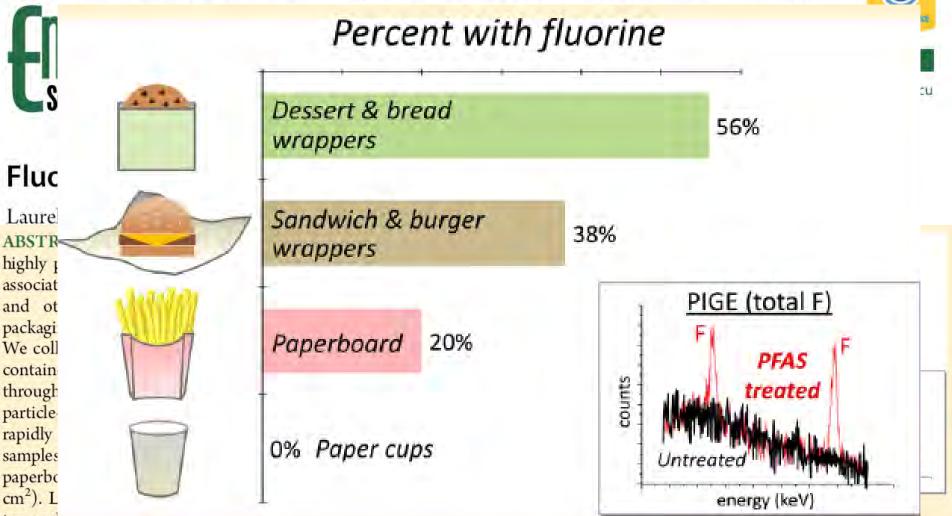
Evolution, not revolution...

Meal No. 1

1/2 lb. Hamburger w/Cheese on White Bun Potato Chips Cookies

Meal No. 2 1/4 lb. Hamburger w/Fat-Free Cheese on Whole Wheat Bun Coleslaw Baked Beans Cookies

Meal No. 3


One Half 1/4 lb. Hamburger on Whole Wheat Bun Roasted Vegetables Baked Beans, Low Fat Pear

YOU DISGUST ME RONALD! YOU'RE NOT EVEN SCARY!

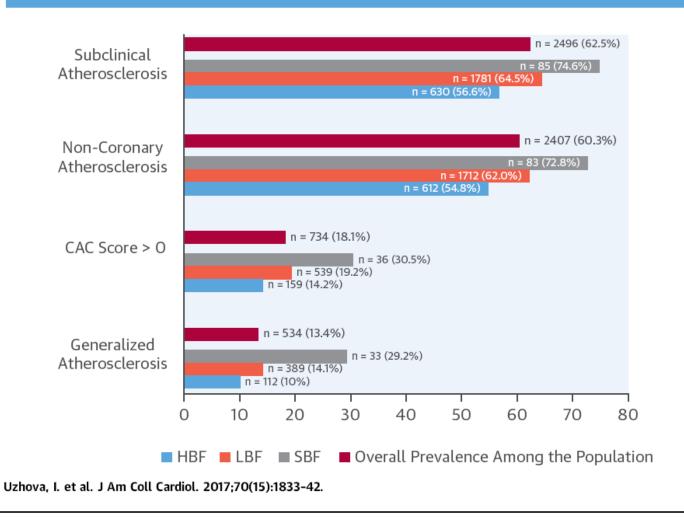
I'VE KILLED MORE PEOPLE THAN YOU

This is an open access article published under an ACS AuthorChoice <u>License</u>, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

try analysis of a subset of 20 samples found perhabitocarbox-

ylates, perfluorosulfonates, and other known PFASs and/or unidentified polyfluorinated compounds (based on nontargeted analysis). The total peak area for PFASs was higher in 70% of samples (10 of 14) with a total fluorine level of >200 nmol/cm² compared to six samples with a total fluorine level of <16 nmol/cm². Samples with high total fluorine levels but low levels of measured PFASs may contain volatile PFASs, PFAS polymers, newer replacement PFASs, or other fluorinated compounds. The prevalence of fluorinated chemicals in fast food packaging demonstrates their potentially significant contribution to dietary PFAS exposure and environmental contamination during production and disposal.

The Importance of Breakfast in Atherosclerosis Disease


Insights From the PESA Study

Irina Uzhova, MSc,^a Valentín Fuster, MD, PHD,^{a,b} Antonio Fernández-Ortiz, MD, PHD,^{a,c,d,e} José M. Ordovás, PHD,^{a,f,g} Javier Sanz, MD,^{a,b} Leticia Fernández-Friera, MD, PHD,^{a,c,h} Beatriz López-Melgar, MD, PHD,^{a,h} José M. Mendiguren, MD,ⁱ Borja Ibáñez, MD, PHD,^{a,c,j} Héctor Bueno, MD, PHD,^{a,d,k} José L. Peñalvo, PHD^l

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 70, NO. 15, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.Jacc.2017.08.027

CENTRAL ILLUSTRATION Overall Prevalence of an Atherosclerosis Among PESA Study Participants and According to the Type of Breakfast Consumed

Atherosclerosis Prevalence (%)

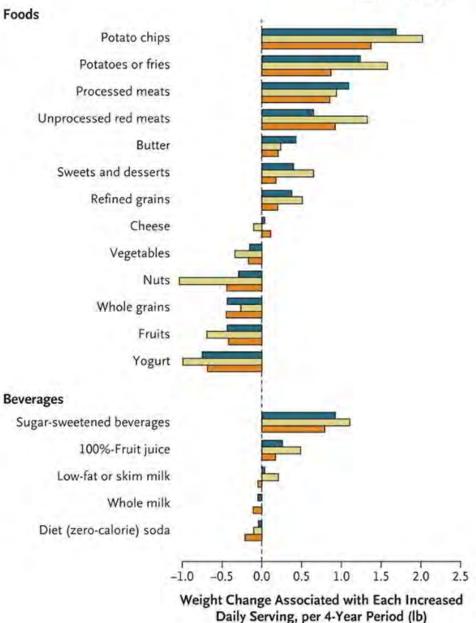
The prevalence of an atherosclerosis is presented for total population, as well as by breakfast habits categories. The SBF group presents the highest proportion of individuals with subclinical, noncoronary, generalized atherosclerosis and increased coronary artery calcium score. CACs = coronary artery calcium score; HBF = high-energy breakfast; LBF = low-energy breakfast; PESA = Progression of Early Subclinical Atherosclerosis; SBF = skipping breakfast.

TABLE 1 Demographics and Lifestyle Characteristics			
	HBF (n = 1,122)	LBF (n = 2,812)	SBF (n = 118)
Demographics			
Age, yrs	$45.41 \pm 4.23^{*+}$	$\textbf{45.95} \pm \textbf{4.27} \textbf{\ddagger}$	$\textbf{46.53} \pm \textbf{4.27} \textbf{\ddagger}$
Female	503 (44.8)*†	951 (33.8)‡	34 (28.8)‡
Education			
High school or lower	238 (21.4)*	741 (26.5)‡	34 (28.8)
College degree	160 (14.4)	423 (15.2)	21 (17.8)
University degree or higher	714 (64.2)*	1628 (58.3) <mark>‡</mark>	63 (53.4)
Marital status			
Married	851 (83.4)	2,139 (83.8)	91 (82.0)
Single	73 (7.2)	219 (8.6)	14 (12.6)
Divorced	90 (8.80)	185 (7.20)	6 (5.40)
Widow	6 (0.60)	11 (0.40)	0 (0.00)
Lifestyle			
Physical activity level (total physical activity counts/day)	$\textbf{3,604} \pm \textbf{6,071}$	3,537 ± 5,179	3,668 ± 5,223
Smoking status			
Current smoker	196 (17.5)*†	588 (20.9)†‡	49 (41.5)*‡
Social smoker	103 (9.2)	226 (8.0)	11 (9.3)
Ex-smoker	344 (30.7)	928 (33.0)	33 (28.0)
Nonsmoker	479 (42.7)*†	1070 (38.1)†‡	25 (21.2)*‡
Dieting to lose weight	89 (7.9)*†	367 (13.1)‡	21 (17.8)‡
Time spent on breakfast, min	$11.00 \pm 5.81^{*+}$	$8.40\pm5.84^{\ddagger\ddagger}$	4.93 ± 7.16*‡
% of daily EI at lunch	$\textbf{38.63} \pm \textbf{6.25*+}$	$\textbf{41.97} \pm \textbf{6.55} \textbf{\ddagger}$	47.53 ± 9.25*‡

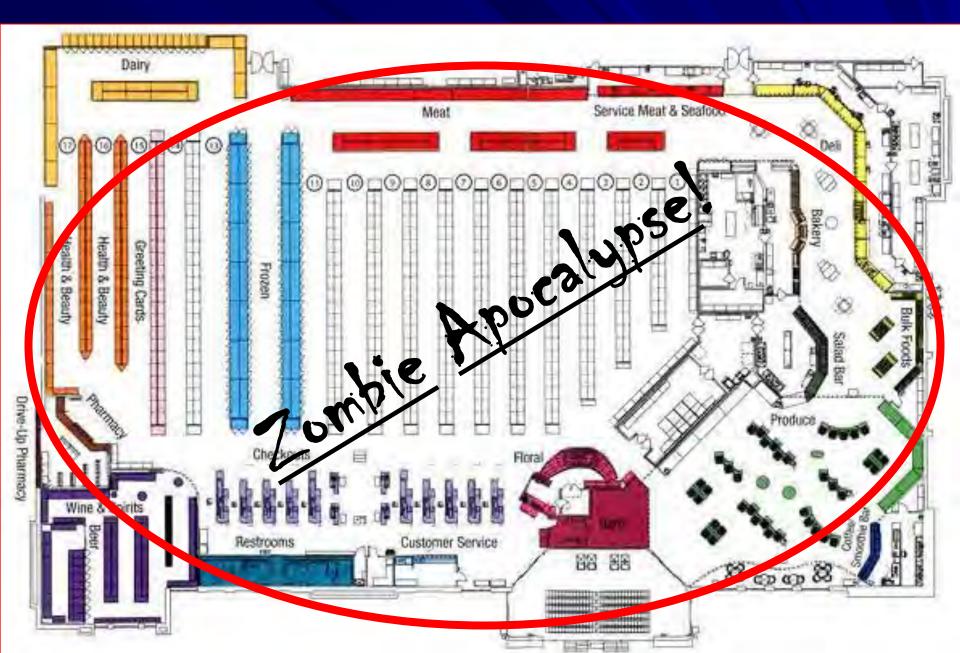
Values are mean \pm SD or n (%). Bonferroni correction was applied for categorical variables (p < 0.017). *p < 0.05 vs. LBF. †p < 0.05 vs. SBF. ‡p < 0.05 vs. HBF.

EI = energy intake; HBF = high-energy breakfast; LBF = low-energy breakfast; PA = physical activity; SBF = skipping breakfast; WC = waist circumference.

TABLE 2 Overall Dietary Profile of PESA Study Participants According to Breakfast Pattern						
	HBF (n = 1,122)	LBF (n = 2,812)	SBF (n = 118)			
Macronutrients, g/day or m	Macronutrients, g/day or mg/day					
Energy intake, kcal	$2,234 \pm 450*$	$2,345 \pm 467 \ddagger$	$2,358 \pm 562 \ddagger$			
Total protein	94.3 ± 18.0*†	$102.4\pm20.0\ddagger$	105.7 ± 24.0‡			
Animal protein	64.8 ± 15.0*†	72.1 ± 17.1†‡	76.6 ± 20.7*‡			
Vegetable protein	29.08 ± 8.23*	29.84 ± 8.39‡	$\textbf{28.69} \pm \textbf{9.83}$			
Total fat	103.1 ± 22.9*†	108.3 ± 24.2	113.6 ± 30.6‡			
Cholesterol	334.4 ± 98.2*†	361.6 ± 94.8†‡	385.7 ± 111.0*‡			
MUFA	47.0 ± 11.6*†	49.3 ± 11.5†‡	52.4 ± 13.8*‡			
PUFA	16.62 ± 5.09*†	17.81 ± 5.48†‡	19.05 ± 7.06*‡			
SFA	29.98 ± 8.62*†	32.05 ± 9.00‡	32.84 ± 10.90			
Carbohydrates	218.5 ± 58.1†	220.0 ± 58.8†	197.0 ± 63.8*‡			
Sugar	94.0 ± 31.8*†	90.9 ± 30.6†‡	75.5 ± 34.4*‡			
Polysaccharides	119.7 ± 40.6*	125.7 ± 43.2‡	119.2 ± 46.0			
Fiber	21.08 ± 6.48	20.90 ± 5.991	18.99 ± 6.19*±			
Food group, g/day			10100 1 0110 1			
Fruits and vegetables	474 ± 210*†	435 ± 202†‡	369 ± 182*‡			
Dried fruits	7.30 ± 10.76	7.94 ± 12.26	9.65 ± 16.64			
Legumes	25.2 ± 21.2	26.0 ± 22.9	27.4 ± 23.3			
Potatoes	20.0 ± 17.1	21.1 ± 17.7	19.3 ± 16.7			
Refined grains	216.0 ± 92.8*	$234.0 \pm 98.7 \pm$	231.0 ± 101.5			
Whole grains	14.3 ± 31.9*†	$9.1 \pm 21.6^{++}$	$2.5 \pm 10.6^{*\pm}$			
Nuts	5.03 ± 5.92	5.41 ± 5.68	5.16 ± 4.91			
Olives	$4.05 \pm 6.30^{*+}$	4.65 ± 6.521	7.26 ± 15.13*±			
Red meat	$93.0 \pm 42.2^{*+}$	$4.03 \pm 0.321 \pm$ 112.9 ± 50.1†‡	$145.1 \pm 68.6^{*\pm}$			
Lean meat	$93.0 \pm 42.2^{\circ}$ $63.3 \pm 30.7^{*}$	66.9 ± 33.5	67.7 ± 32.6			
Seafood (fish, shellfish)	$75.8 \pm 36.2^{*}$	$79.1 \pm 38.9 \pm$	78.1 ± 39.9			
		$19.1 \pm 38.9 + 196 \pm 137 + 196 \pm 137 + 1000 + 100 + 1000 + 1000 + 1000 + 10000 + 1000 + 1000 + 1000 +$	78.1 ± 39.9 141 ± 116*‡			
Dairy	207 ± 151†					
Low-fat dairy	88.3 ± 125.8	90.0 ± 121.8†	61.4 ± 112.7*			
Vegetable oil and fat	5.02 ± 5.92	5.40 ± 5.68	5.15 ± 4.91			
Butter	5.89 ± 6.72*†	4.26 ± 4.39†‡	2.30 ± 2.03*‡			
Olive oil	31.7 ± 14.1*	29.9 ± 12.2‡	31.0 ± 11.8			
Precooked meals, fast food	55.6 ± 34.0*†	66.9 ± 42.1‡	68.6 ± 35.6‡			
Chips and snacks	$\textbf{5.02} \pm \textbf{7.06*}\textbf{\dagger}$	6.49 ± 9.12†‡	8.69 ± 11.73*‡			
Commercial bakery	71.4 ± 50.0	$69.6\pm47.8^{\dagger}$	$54.3 \pm 47.5^{*+}$			
Alcohol (distilled spirits, wine, beer)	122 ± 144*†	$190\pm227^{\ddagger\ddagger}$	299 ± 328*‡			
SSB	$132\pm184^{*}_{1}$	$157\pm204^{\dagger\ddagger}$	$256\pm439^{*}\ddagger$			
Tea, coffee	$167 \pm 131 \dagger$	$174\ \pm 128$	$202\pm193\ddagger$			
Dietary quality						
Mediterranean cluster	533 (47.5)*†	1,052 (37.4)†‡	30 (25.4)*‡			
Western cluster	485 (43.2)†	1,148 (40.8)†	35 (29.7)*‡			
Social business cluster	104 (9.3)*†	612 (21.8)†‡	53 (44.9)*‡			


Values are mean \pm SD or n (%). Bonferroni correction was applied for categorical variables (p < 0.017). *p < 0.05 vs. LBF. †p < 0.05 vs. SBF. ‡p < 0.05 vs. HBF.

 $MUFA = monounsaturated fatty \ acids; \ PESA = Progression of Early \ Subclinical \ Atherosclerosis; \\ PUFA = polyunsaturated \ fatty \ acids; \ SFA = saturated \ fatty \ acids; \ SSB = sugar-sweetened \\ beverages; \ other \ abbreviations \ as \ in \ Table \ 1.$


TABLE 2 Overall Dietary Profile of PESA Study Participants According to Breakfast Pattern			
	HBF (n = 1,122)	LBF (n = 2,812)	SBF (n = 118)
Dietary quality			
Mediterranean cluster	533 (47.5)*†	1,052 (37.4)†‡	30 (25.4)*‡
Western cluster	485 (43.2)†	1,148 (40.8)†	35 (29.7)*‡
Social business cluster	104 (9.3)*†	612 (21.8)†‡	53 (44.9)*‡

NHS (women)
 NHS II (women)
 HPFS (men)

Weight creep

N Engl J Med 2011;364:2392-404.

Bullseye!

Low fat/ Ornish

X

DASH/ Medi

Paleo/ keto

Totality of Evidence

Whole food / plant based.

Less processed (bad carbs).

Less sugar (bad carbs).

Limit red meat.

Good fats, not high fat.

Good carbs.

Reasonable portions.

Sleep.

Exercise.

Summary

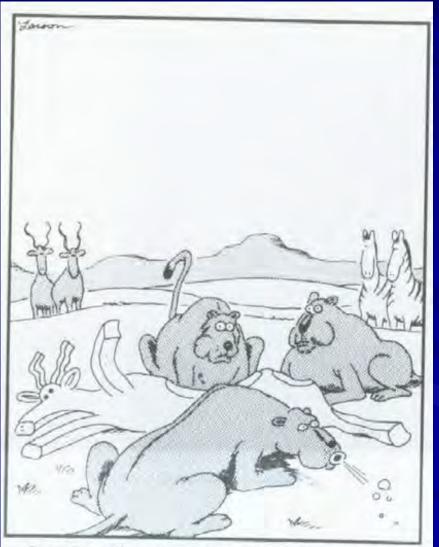
	Low-carbohydrate	Low-fat/ vegetarian/vegan	Low-glycemic	Mediterranean	Mixed/balanced	Paleolithic
Health benefits relate to:	Emphasis on restriction of refined starches and added sugars in particular.	Emphasis on plant foods direct from nature; avoidance of harmful fats.	Restriction of starches, added sugars; high fiber intake.	Foods direct from nature; mostly plants; emphasis on healthful oils, notably monounsaturates.	Minimization of highly processed, energy-dense foods; emphasis on wholesome foods in moderate quantities.	Minimization of processed foods. Emphasis on natural plant foods and lean meats.
Compatible elements:						
And all potentially consistent with:	Food, not too much, mostly plants ^{a,b,c} .					

^aFrom Reference 135.

^bPortion control may be facilitated by choosing better-quality foods which have the tendency to promote satiety with fewer calories. ^cWhile neither the low-carbohydrate nor Paleolithic diet need be "mostly plants," both can be.

Ratz DL, Meller S. 2014. Annu. Rev. Public Health. 35:83–103

- Everyone is different.
- Sustainability is key, not a diet...
- Enjoy life, don't torture yourself,
- or others for that matter...


Keep It Simple Stupid...

#1 lesson...

Healthy Kitchens, Healthy Lives® Caring for Our Patients, and Ourselves www.healthykitchens.org

"It has to taste good!"

In sudden disgust, the three lionesses realized they had killed a tofudebeest—one of the Serengeti's obnoxious health antelopes.

Mark Sisson

"Life is about enjoying the process." -Mark Sisson

Sustainability...

What keeps you from getting hangry?

- Fats satisfy
- Protein stays in your stomach
- Fiber fills you up
- So does just drinking
 H₂O...

The skinny on fats...

THE Association. It is why: Healthy For Good" FACTS ON FAT

> The American Heart Association recommends replacing bad (saturated) fats with good (unsaturated) fats as part of a healthy eating pattern.

The skinny on fats...

Food is FUEL! What are you going to put into your tank?

You are what you eat. So don't be fast, cheap, easy or fake.

Being <u>V</u>egan vs vegan diet...

FIRST RULE OF VEGAN CLUB,

TELL EVERYONE ABOUT VEGAN CLUB

Being <u>Vegan</u> vs vegan diet...

WHAT IFITOLD YOU

YOU COULD BE VEGAN WITHOUT BEING A PRETENTIOUS JERK?

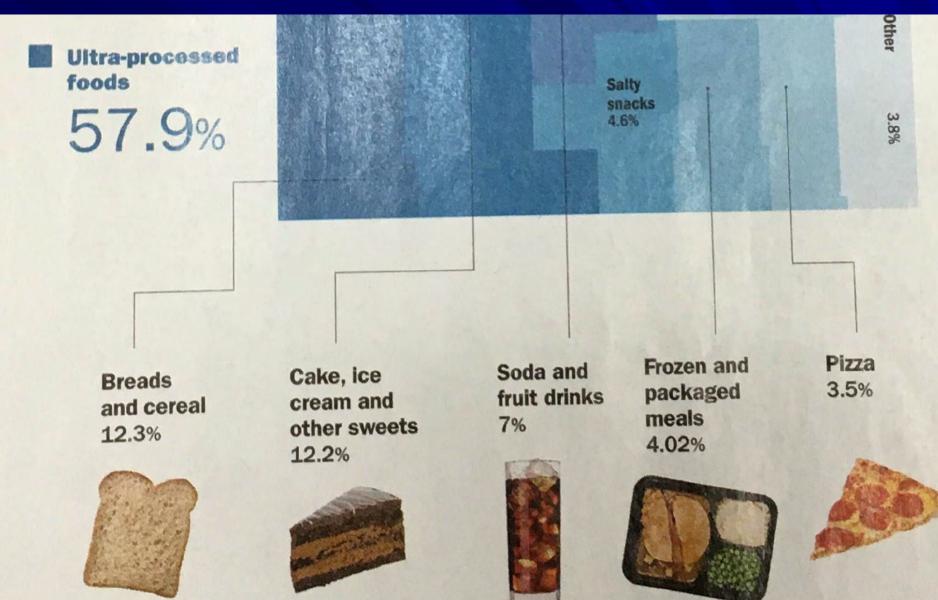
imgflip.com

Being <u>V</u>egan vs vegan diet...


EALT VERIS

MILITANT VEGANS EVERYWHERE

What is 'success'?


John Benton

Clowns are awesome!

The Bad & the UGLY!

ORIGINAL RESEARCH

Religious Attendance: More Cost-Effective Than Lipitor?

Daniel E. Hall, MD, MDiv

Table 1. Published Estimates for Modeled Parameters

Modality	OR/RR	Range*	Cost
Regular physical exercise†	$\begin{array}{c} 0.66^{11} \\ 0.74^{12} \\ 0.775^2 \end{array}$	Not reported	\$500
Statin-type medication		0.60 to 0.92	\$836 ¹³
Weekly religious attendance		0.719 to 0.833	\$516 ^{14,15}

* Range corresponds to the 95% CI for each point estimate.

 \dagger Relative risk of regular physical exercise was calculated and reported separately by these authors for both women (0.66) and men (0.65). Given that these values are nearly identical, the more conservative estimate is used in this analysis.

Special Report

Effect Size Estimates of Lifestyle and Dietary Changes on All-Cause Mortality in Coronary Artery Disease Patients A Systematic Review

J.A. Iestra, RD; D. Kromhout, MPH, PhD; Y.T. van der Schouw, PhD; D.E. Grobbee, MD, PhD; H.C. Boshuizen, PhD; W.A. van Staveren, PhD August 9, 2005

TABLE 4. Approximate Mortality Reduction Potential of Lifestyle and Dietary Changes Estimated From Studies in CAD Patients and the General Population

Recommendation	Mortality Risk Reduction Estimated From Studies in CAD Patients	Mortality Risk Reduction Estimated From Cohort Studies in General Population
Smoking cessation	35%	50%
Physical activity	25%	20%-30%
Moderate alcohol	20%	15%
Combined dietary changes	45%	15%40%

932 Circulation August 9, 2005

TABLE 5. Approximate Mortality Reduction Potential of Preventive Drug Interventions After MI

Intervention	Mortality Risk Reduction, Mean (95% Cl)
Low-dose aspirin ¹¹¹	18% (1%-30%)
Statins ¹¹²	21% (14%–28%)
β-Blockers ¹¹³	23% (15%–31%)
ACE inhibitors ¹¹⁴	26% (16%–35%)

Cumulative Incidence of Diabetes According to Study Group.

Diabetes Prevention Program Research Group. N Engl J Med 2002;346:393-403.

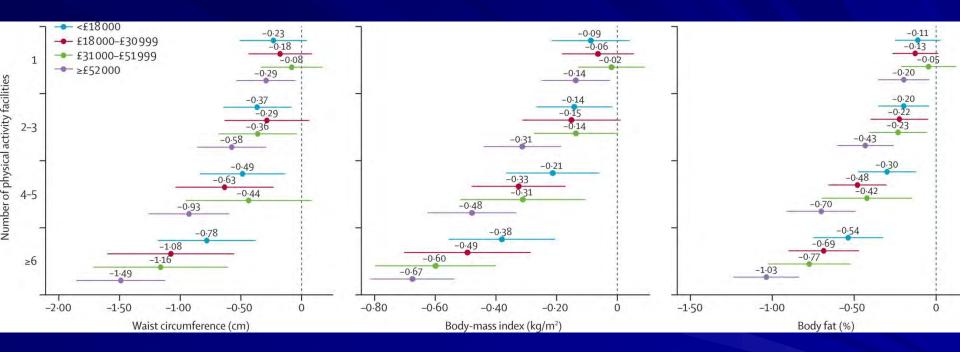
Associations between fast food and physical activity environments and adiposity in mid-life: cross-sectional, observational evidence from UK Biobank

Kate E Mason, Neil Pearce, Steven Cummins

The "obesogenic environment"

The Lancet Public Health Volume 3, Issue 1, Pages e24-e33 (January 2018) DOI: 10.1016/S2468-2667(17)30212-8

Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Terms and Conditions


Morphometrics by location?

The Lancet Public Health 2018 3, e24-e33DOI: (10.1016/S2468-2667(17)30212-8) Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Terms and Conditions

Morphometrics by gym?

The Lancet Public Health 2018 3, e24-e33DOI: (10.1016/S2468-2667(17)30212-8) Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Terms and Conditions Meal No. 1 Cheese Pizza Breadsticks Marinara Sauce

> Meal No. 2 Cheese Pizza Breadstick Marinara

> > Sauce

Dressing

Salad

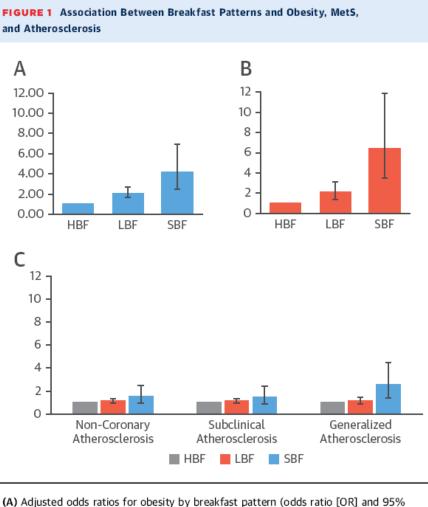
Fat-Free

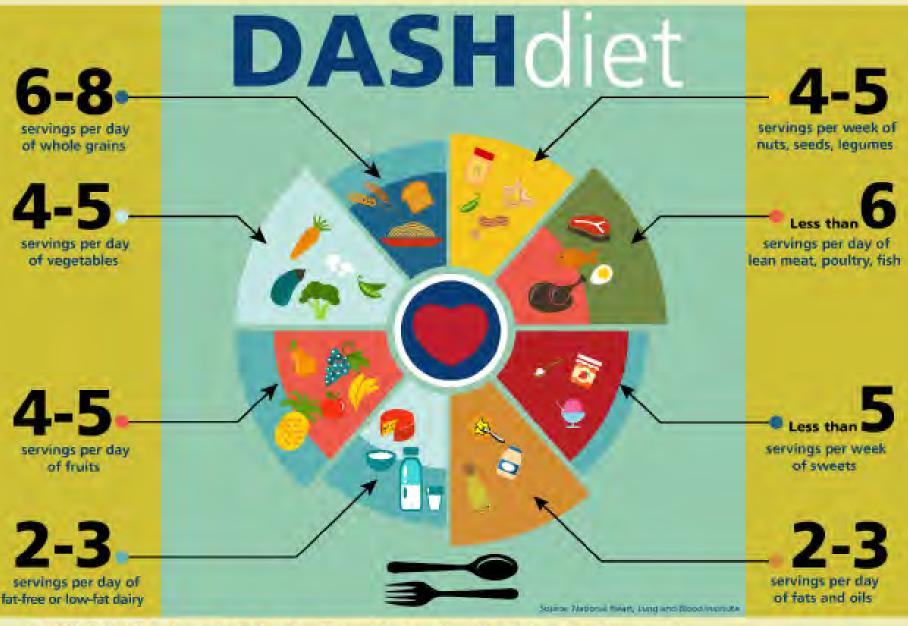
Meal No. 3 Cheese Pizza Salad Fat-Free Dressing Minestrone Soup Fruit Salad

Meal No.1

3 cups White Spaghetti 2 cups Meat Sauce Garlic Bread

Meal No. 2


2 cups Whole Wheat Spaghetti 1 cup Meat Sauce Whole Wheat Ba Brocc


Meal No. 3

1 cup Whole Wheat Spaghetti 1/2 cup Marinara Sauce Lentil Soup Broccoli Raspberries w/Whipped Topping

(A) Adjusted odds ratios for obesity by breakfast pattern (odds ratio [OR] and 95% confidence interval [CI]). Model adjusted for age (years), sex (male/female), energy intake (kcal/day), smoking (yes/no), daily alcohol consumption (g/day), hypertension (yes/no), diabetes (yes/no), dyslipidemia (yes/no), and dieting (yes/no). Obesity defined as body mass index \ge 30 kg/m². (B) Adjusted ORs for metabolic syndrome (MetS) by breakfast pattern (OR and 95% CI). Model adjusted for age (years), sex (male/female), energy intake (kcal/day), smoking (yes/no), daily alcohol consumption (g/day), and family history of cardiovascular disease (yes/no). (C) Adjusted odds ratios for atherosclerosis by breakfast pattern (OR and 95% CI). Model adjusted for age (years), sex (male/female), smoking (yes/no), hypertension (yes/no), diabetes (yes/no), dyslipidemia (yes/no), waist circumference (cm), and daily intakes of red meat, alcohol, and salt (g). HBF = high-energy breakfast; LBF = low-energy breakfast; SBF = skipping breakfast.

The DASH diet (Dietary Approaches to Stop Hypertension) has been shown to help lower blood pressure and prevent heart disease, stroke, diabetes and even some forms of cancer. It focuses on eating more fresh fruits and vegetables.

This is a guide to how much of each food group you should eat every day, based on eating 2,000 calories per day.

The Inadmissibility of What We Eat in America and NHANES Dietary Data in Nutrition and Obesity Research and the Scientific Formulation of National Dietary Guidelines

Edward Archer, PhD; Gregory Pavela, PhD; and Carl J. Lavie, MD

Frank Medrano-vegan...

https://www.youtube.com/watch?v=RFPsvF3UOdo

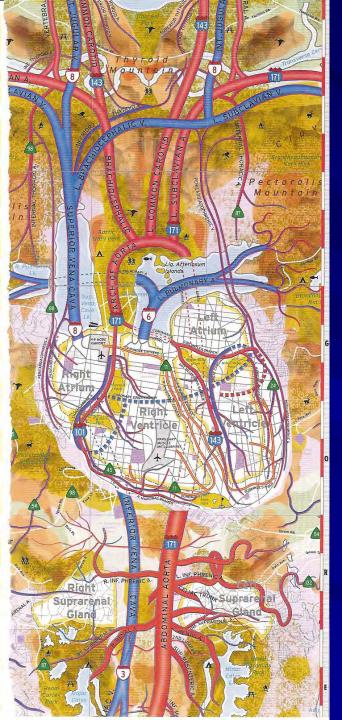
Case Study: Vegans are wimps

Winner of Ultimate Fighter 6.
Vegan.
Started due to his allergies.
PETA spokesperson?

Case Study: Vegans are wimps-2

My Unlikely Journey to Ultramarathon Greatness

FATRUN

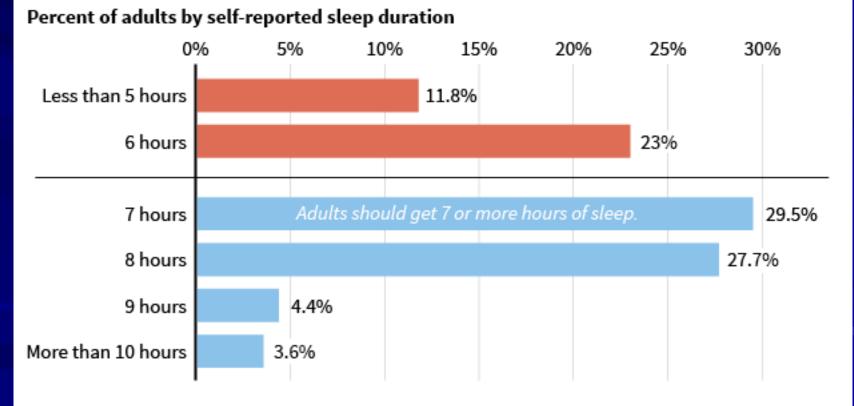


2 x winner of Badwater. 135 miles ultramarathon... In Death Valley! Ran 165 miles in 24 hours-that's 6.5 marathons! Vegan!

Patrik Baboumian-Vegans are NOT wimps.

World's Strongest Man Carried 550 kg x 10m Lifted a 180 kg log Vegetarian since 2005 Vegan since 2011

Summary Eat more veggies. Limit, or eliminate, red meat and pork. Healthy snacks-no potatoes. Be active. Exercise. Sleep more. There are good & bad carbs. There are good & bad fats.


Sleep-the new cross training!

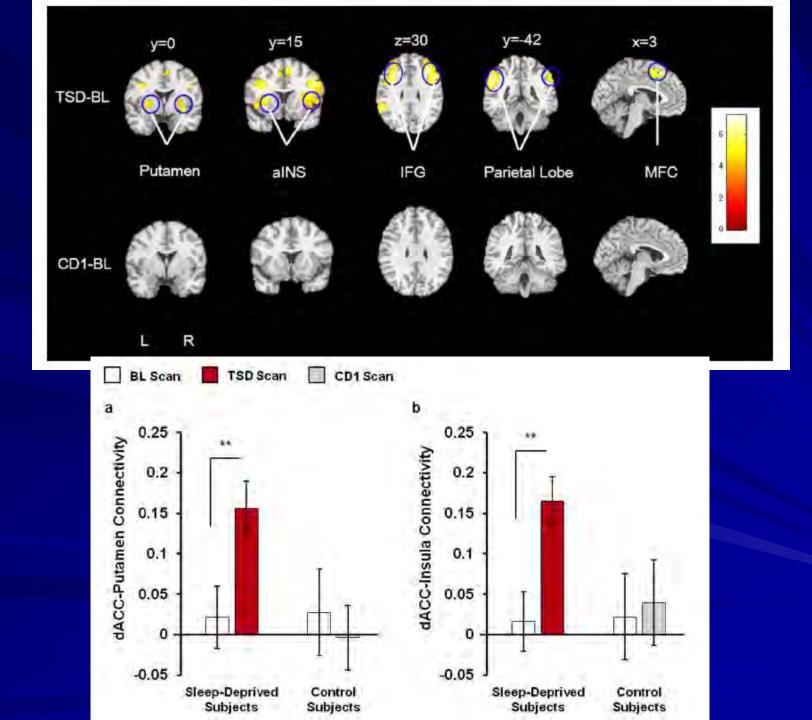
TRAIN LIKE AN ATHLETE, EAT LIKE A NUTRITIONIST, SLEEP LIKE A BA37, WIN... LIKE A CHAMPION

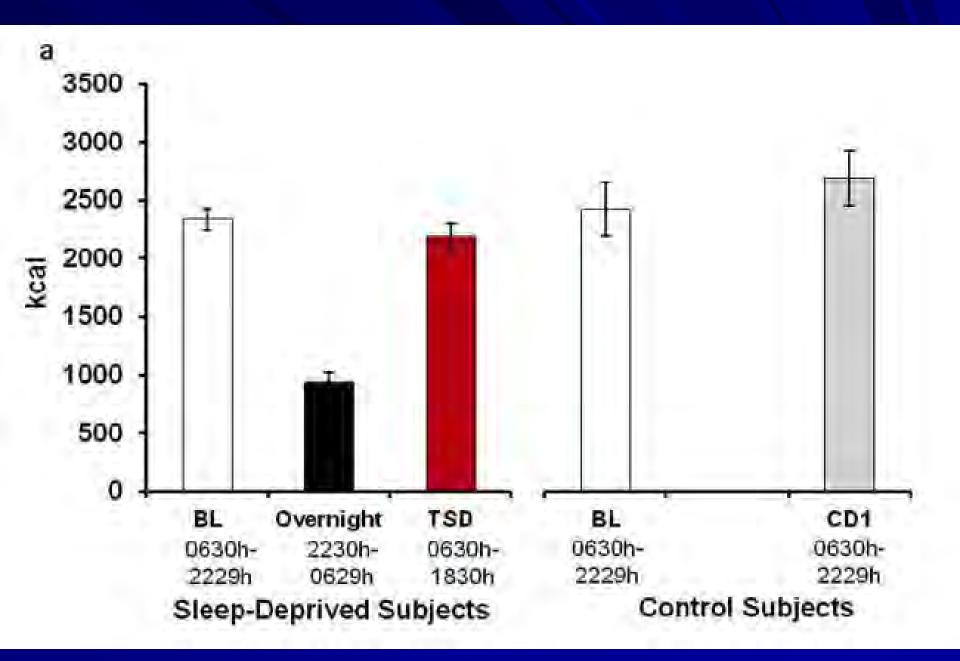
Sleep, the new cross-training!

More Than A Third Of U.S. Adults Don't Get Enough Sleep

Source: CDC

Altered salience network connectivity predicts macronutrient intake after sleep deprivation


Zhuo Fang¹*, Andrea M. Spaeth²*, Ning Ma¹, Senhua Zhu¹, Siyuan Hu¹, Namni Goel³, John A. Detre¹, David F. Dinges³ & Hengyi Rao^{1,3}


¹Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, ²Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, ³Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.

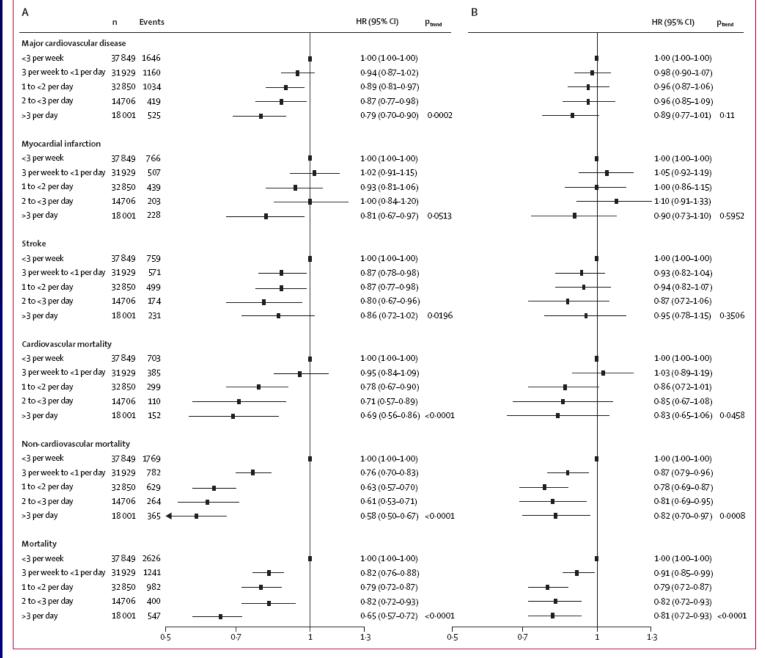
Poor sleep lowers will power.

It also increases caloric consumption, fat intake, etc the next day.

How / why?

"Your mission if you should choose to accept it..."

Disparities in State-Specific Adult Fruit and Vegetable Consumption — United States, 2015


	Median fruit servings	Median veg servings	% meeting fruit rec	% meeting veg rec
USA	1.0	1.7	12.2%	7.3%
Ohio	1.0	1.6	10.6%	6.6%
WV (lowest)			7.3%	5.8%
DC (highest)			15.5%	
Alaska (highest				12.0%

Weekly / November 17, 2017 / 66(45);1241–1247 https://www.cdc.gov/mmwr/volumes/66/wr/mm6645a1.h tm

PURE Study

Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study

Victoria Miller, Andrew Mente, Mahshid Dehghan, Sumathy Rangarajan, Xiaohe Zhang, Sumathi Swaminathan, Gilles Dagenais, Rajeev Gupta, Viswanathan Mohan, Scott Lear, Shrikant I Bangdiwala, Aletta E Schutte, Edelweiss Wentzel-Viljoen, Alvaro Avezum, Yuksel Altuntas, Khalid Yusoff, Noorhassim Ismail, Nasheeta Peer, Jephat Chifamba, Rafael Diaz, Omar Rahman, Noushin Mohammadifard, Fernando Lana, Katarzyna Zatonska, Andreas Wielgosz, Afzalhussein Yusufali, Romaina Iqbal, Patricio Lopez-Jaramillo, Rasha Khatib, Annika Rosengren, V Raman Kutty, Wei Li, Jiankang Liu, Xiaoyun Liu, Lu Yin, Koon Teo, Sonia Anand, Salim Yusuf, on behalf of the Prospective Urban Rural Epidemiology (PURE) study investigators^{*}

Figure 2: Association of fruit intake with cardiovascular outcomes and mortality

(A) Adjusted for age, sex, and centre (random effect). (B) Adjusted for age, sex, centre (random effect), energy intake, current smoker, diabetes, urban or rural location, physical activity, education level, and tertiles of white meat, red meat, and intake of breads, cereals, and vegetables. Crude event rates are shown. Additional sensitivity analyses with waist-to-hip ratio, hypertension status, and statin medication used in the model did not substantially change estimates of association (appendix). HR=hazard ratio. Major cardiovascular disease events=death from cardiovascular causes and non-fatal myocardial infarction, stroke, and heart failure.

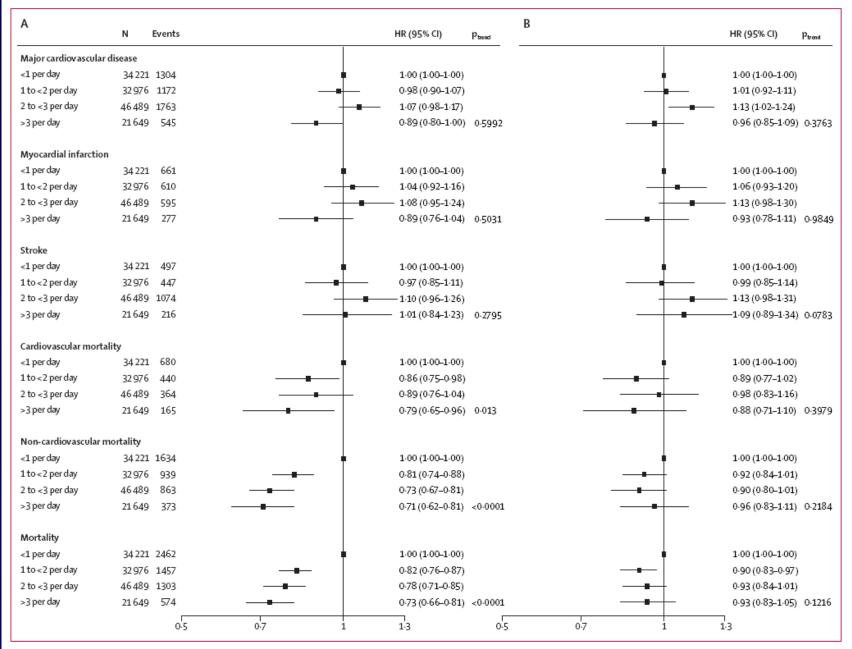
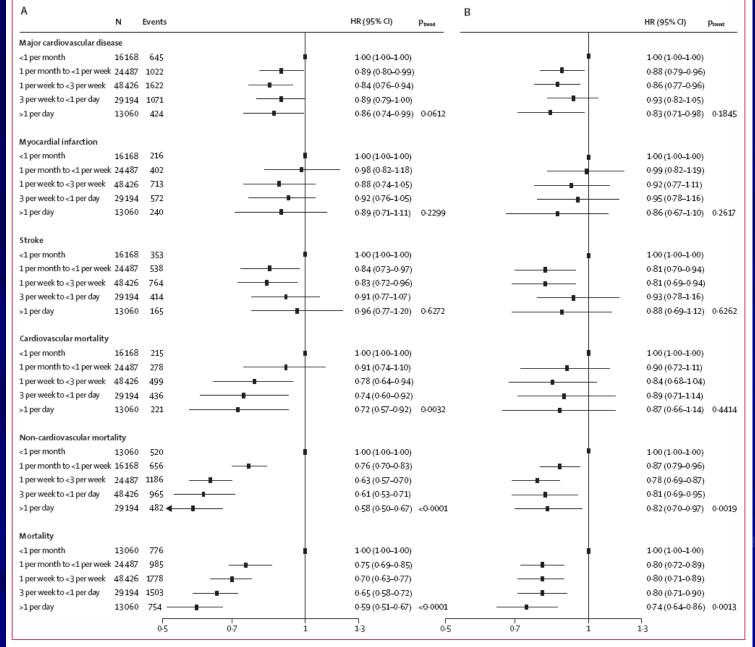



Figure 3: Association of vegetable intake with cardiovascular outcomes and mortality

(A) Adjusted for age, sex, and centre (random effect). (B) Adjusted for age, sex, centre (random effect), energy intake, current smoker, diabetes, urban/rural location, physical activity, education level, and tertiles of white meat, red meat, and intake of breads, cereals, and fruit. Crude event rates are shown. Additional sensitivity analyses with waist-to-hip ratio, hypertension status, and statin medication used in the model did not substantially change estimates of association (appendix). HR=hazard ratio. Major cardiovascular disease events=death from cardiovascular causes and nonfatal myocardial infarction, stroke, and heart failure.

Figure 4: Association of legume intake with cardiovascular outcomes and mortality

(A) Adjusted for age, sex, and centre (random effect). (B) Adjusted for age, sex, centre (random effect), energy intake, current smoker, diabetes, urban/rural location, physical activity, education level, and tertiles of white meat, red meat, and intake of breads and cereals. Crude event rates are shown. Additional sensitivity analyses with waist-to-hip ratio, hypertension status, and statin medication used in the model did not substantially change estimates of association (appendix). HR=hazard ratio. Major cardiovascular disease events=death from cardiovascular causes and nonfatal myocardial infarction, stroke, and heart failure.

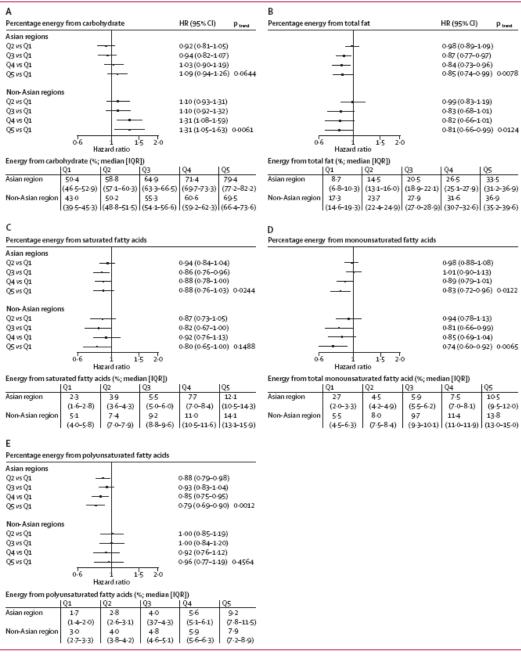


Figure 2: Associations between (A) carbohydrate, (B) total fat, (C) saturated fatty acids, (D) monounsaturated fatty acids, and (E) polyunsaturated fatty acids with risk of total mortality in Asia and other regions

Hazard ratios (HRs) and 95% CIs are adjusted for age, sex, education, waist-to-hip ratio, smoking, physical activity, diabetes, urban or rural location, and energy intake. Centrewas also included as a random effect and frailty models were used (p for heterogeneity >0-2 for total fat and >0-5 for carbohydrate, saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids). Q1–Q5=quintiles 1–5.

The world has changed.
Low fat foods...
High carb / sugar instead.

I CAN'T CURE DIABETES IN OFFICE HAS BE DONE IN THE KITCHEN, IN RESTAURANTS AND SCHOOLS

AND WORK!

Where should you live if you want to be healthy?

In reality...

CONTACTS_

Dr. Harold Goldstein, California Center for Public Health Advocacy (530) 400-9106 or hg@publichealthadvocacy.org

Dr. Susan Babey, UCLA Center for Health Policy Research (310) 794-6961 or sbabey@ucla.edu

EMBARGOED UNTIL MARCH 10, 2016

PREDIABETES

A Generation in Jeopardy

Majority of California Adults Have Prediabetes or Diabetes A Third of Young Adults Prediabetic, Putting a Generation in Jeopardy

DAVIS, CALIF., MARCH 10, 2016 ... Nearly half of California adults – including one out of every three young adults – have prediabetes, a precursor to life-threatening type 2 diabetes, or undiagnosed diabetes, according to a <u>UCLA study</u> released today. The research provides the first analysis and breakdown of California

It's not just California...

"This is the clearest indication to date that the type 2 diabetes epidemic is out of control and getting worse. With limited availability of healthy food in low income communities, a preponderance of soda and junk food marketing, and urban neighborhoods lacking safe places to play, we have created a world where diabetes is the natural consequence."

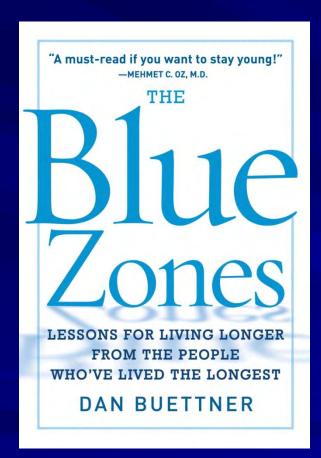
Image: Image: Provide and Content of Cont

"I'll just work it off..."

MEDIUM 1 MEDIUM FRENCH FRY equals

APPROXIMATELY **1 HOUR AND 12 MINUTES** OF SWIMMING

FROM LAURIE DAVID PRODUCER OF AN INCONVENIENT TRUTH AND KATIE COURIC


Before you take another bite...

It's time to get real about food.

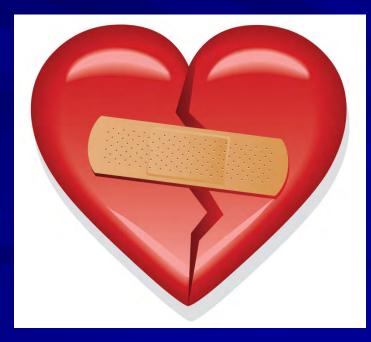
IN THEATERS MAY 9

Get Blue...Blue Zones

- 1. Just move.
- 2. Purpose Now.
- 3. Down shift.
- 4. 80% rule.
- 5. Plant slant.
- 6. Belong.
- 7. Loved Ones 1st.
- 8. Right Tribe.

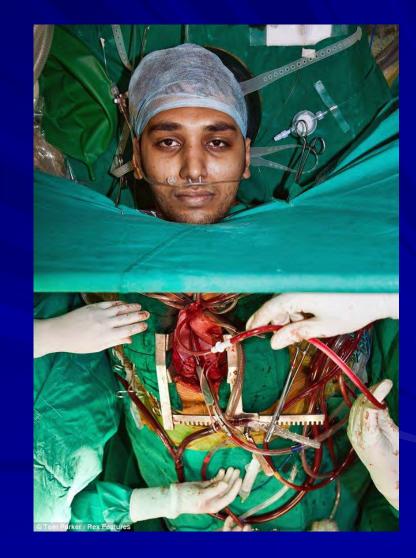
Okinawa, Sardinia Italy, Loma Linda, Nicoya, Costa Rica, and Ikaria, Greece

Priorities-set them. 1st things 1st!


Food is FUEL! What are you going to put into your tank?

You are what you eat. So don't be fast, cheap, easy or fake.

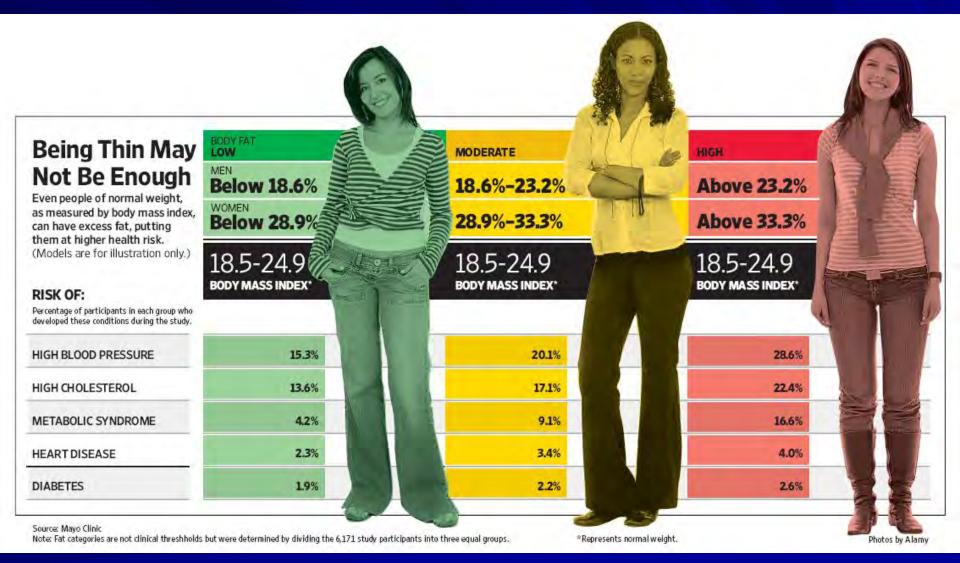
Are we going to treat the symptoms or treat the cause?


What way is easier?

What way is easier?

 Marlon Gibson wei heaviest
 He lost 245 pounds unhealthy food and

510-350= Jacqueline Adan



http://www.today.com/health/woman-drops-350-pounds-encourages-others-never-give-t101862

THE SECRET TO LIVING WELL AND LONGER IS:

EAT HALF WALK DOUBLE. LAUGH TRIPLE, AND LOVE WITHOUT MEASURE. TIBETAN PROVERB

Risk by % fat

YOU shape YOUR destiny with every choice YOU make...

You can choose your destiny...

VS

"Medically Healthy"

My personal choice!

SHOES

TRAINING

NUTRITION

YOGA FOR RUNNERS

Q

SUBSCRIBE

RUNNERS' STORIES HOW RUNNING CHANGED ME

Running Helped This Cardiologist Get off His Blood Pressure and Cholesterol Medications

"I now talk to my patients about lifestyle—especially walking and running—as a way to control and even reverse their chronic illnesses and get off of some of their medications."

By Harvey S. Hahn TUESDAY, APRIL 4, 2017, 2:46 PM

My personal choice!

Instant 6 pack!

Medical Schools

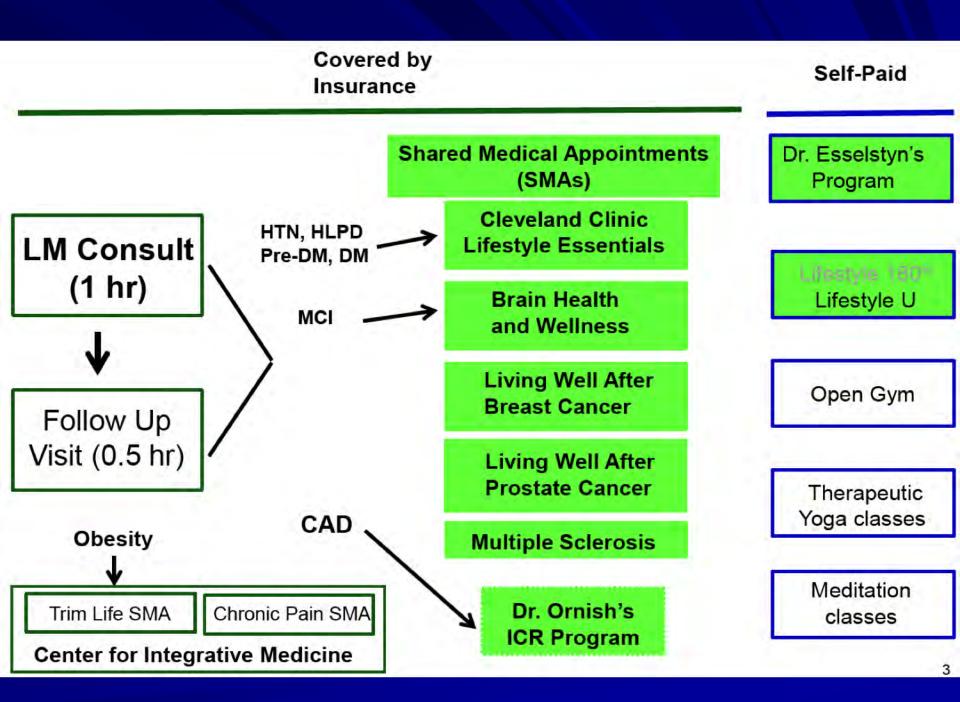
Cooking Schools

Public Health Schools

Food – Business – Innovations

© Eisenberg, HKHL 2016

Barrier: Eating healthy costs too much!


Open Access

Research

BMJ Open Do healthier foods and diet patterns cost more than less healthy options? A systematic review and meta-analysis

Mayuree Rao, ^{1,2} Ashkan Afshin,² Gitanjali Singh,³ Dariush Mozaffarian^{2,3,4}

Costs an extra \$550 per person per year (so \$2200 a year for a family of four). This works out to only \$1.50 per person per day!

Cleveland Clinic

Cleveland Clinic Lifestyle Essent Bession 3 Culinary Medicine

Jan Perka CEC, AAG Watthews Institute Executive Civil

Cleveland Clinic

Lifestyle U A Cleveland Clinic Wellness Program

Prevent and Reverse Heart Disease

The Esselstyn Program

U.S. FOOD CONSUMPTION AS A % OF CALORIES

PLANT FOOD:

Vegetables, Fruits, Legumes, Nuts & Seeds, Whole Grains **Fiber** is only found in plant foods.

NOTE: Up to half of this category may be processed, for example almonds in candy bars, apples in apple pies or spinach in frazen spinach soufflé, and of course these would not be healthy choices. The facus should be an whole unprocessed vegetables, fruits, legumes, nuts and seeds and whole grains.

12% 25%

63%

PROCESSED FOOD: Added Fats & Oils, Sugars, Refined Grains

ANIMAL FOOD:

Meat, Dairy, Eggs, Fish, Seafood **Cholesterol** is only found in animal foods. Animal foods are the PRIMARY source of saturated fat.

GUIDE TO HEALTHY EATING:

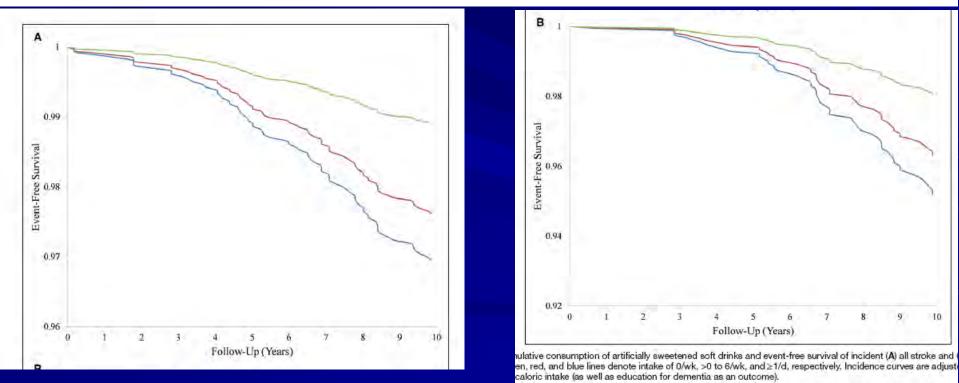
Much easier to understand than the USDA Food Pyramid, with no food industry influence.

Eat **LESS** from the animal and processed food groups and **MORE** whole foods from the plant food group.

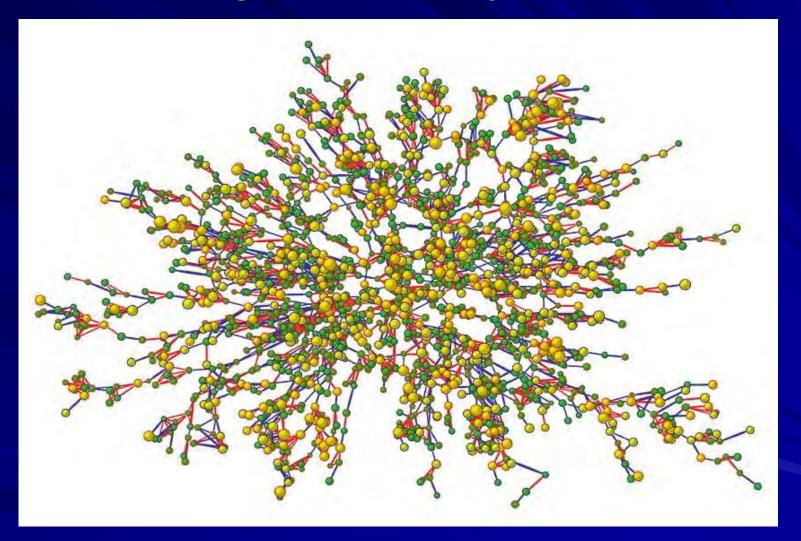
In general, food from the animal and processed food group contribute to disease, while **WHOLE** foods from the plant group contribute to good health.

Source: USDA Economic Research Service, 2009; www.ers.usda.gov/publications/FB33; www.ers.usda.gov/Data/FoodConsumption/FoodGuideIndex.html/calonies New York Coalition for Healthy School Food * www.nealthyschoolfood.org Special thanks to Jael Fuhrman, MD, author of **Disease Proof Your Child: Feeding Kids Right** * Graphics by MichelleBando.com © 2009; New York Coalition for Healthy School Food

Eat Smart!


Add Color

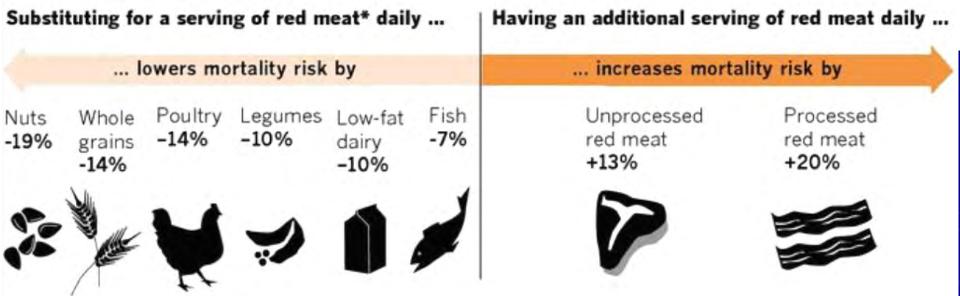
Original Contribution


Sugar- and Artificially Sweetened Beverages and the Risks of Incident Stroke and Dementia A Prospective Cohort Study

Matthew P. Pase, PhD; Jayandra J. Himali, PhD; Alexa S. Beiser, PhD; Hugo J. Aparicio, MD; Claudia L. Satizabal, PhD; Ramachandran S. Vasan, MD; Sudha Seshadri, MD*; Paul F. Jacques, DSc*

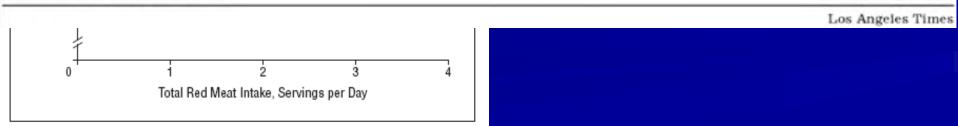
(Stroke. 2017;48:00-00. DOI: 10.1161/STROKEAHA.116.016027.)

Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.


Christakis NA, Fowler JH. N Engl J Med 2007;357:370-379.

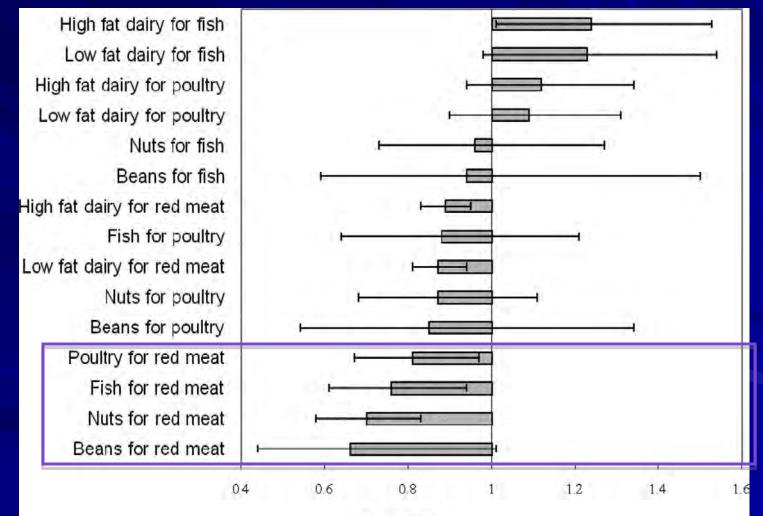
The NEW ENGLAND JOURNAL of MEDICINE

ONLINE FIRST Red Meat Consumption and Mortality

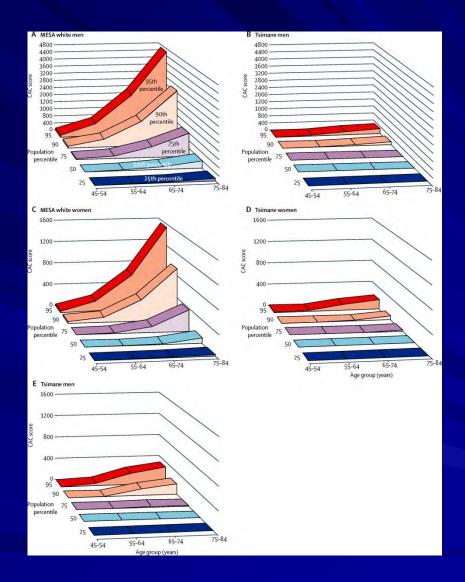

Have nuts instead

*Combines unprocessed and processed red meat consumption categories.

Note: A serving of unprocessed red meat includes beef, lamb or pork as main dish. Processed meat includes bacon, salami, sausage, bologna and others.

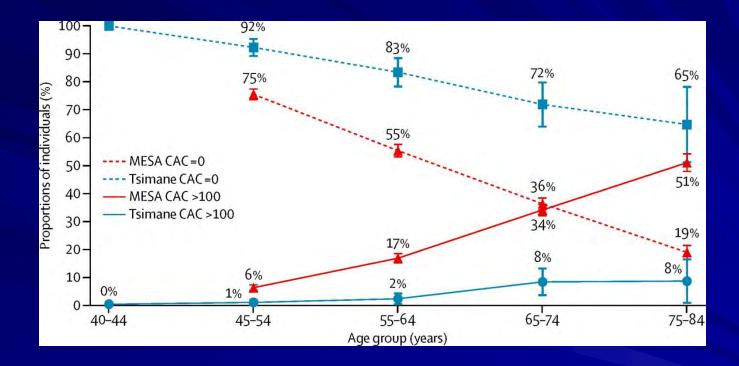

Source: American Medical Assn.

You can run, but you can't hide...


Risk of CHD associated with replacement of a major dietary protein source with another

Hazard Ratios

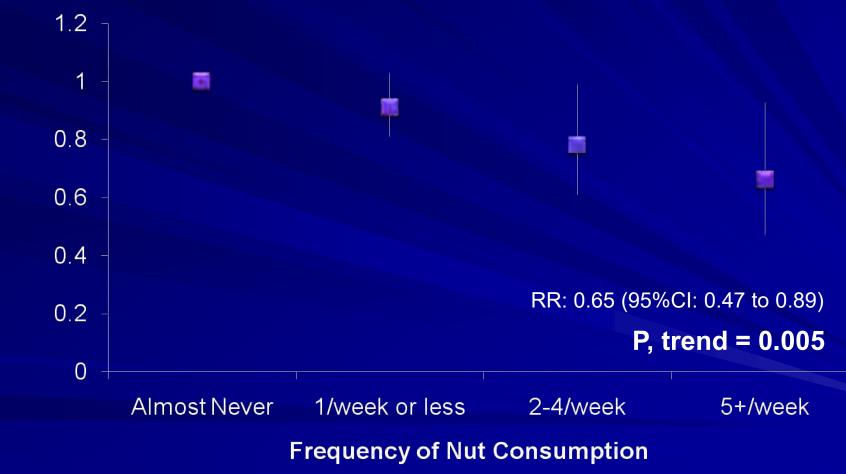
Bernstein, A. M. et al. Circulation 2010;122:876-883


Figure 3

The Lancet 2017 389, 1730-1739DOI: (10.1016/S0140-6736(17)30752-3) Copyright © 2017 Elsevier Ltd <u>Terms and Conditions</u>

Figure 2

The Lancet 2017 389, 1730-1739DOI: (10.1016/S0140-6736(17)30752-3) Copyright © 2017 Elsevier Ltd <u>Terms and Conditions</u>


ORIGINAL ARTICLE

Association of Nut Consumption with Total and Cause-Specific Mortality

Ying Bao, M.D., Sc.D., Jiali Han, Ph.D., Frank B. Hu, M.D., Ph.D., Edward L. Giovannucci, M.D., Sc.D., Meir J. Stampfer, M.D., Dr.P.H., Walter C. Willett, M.D., Dr.P.H., and Charles S. Fuchs, M.D., M.P.H.

Cause of Death and Type	of Nut Women	Men	Pooled	Hazard Ratio (95% CI
All causes				
Any nut	•	+	•	0.86 (0.82-0.89)
Peanut	-	•	•	0.88 (0.84-0.93)
Tree nut	-	+	•	0.83 (0.79-0.88)
Cancer				
Any nut	-		+	0.91 (0.85-0.97)
Peanut	-		•	0.94 (0.88-1.02)
Tree nut			-	0.83 (0.76-0.90)
Heart disease				
Any nut		-	-	0.74 (0.68-0.81)
Peanut				0.76 (0.68-0.84)
Tree nut			-	0.76 (0.67-0.85)
Respiratory disease	i i			. /
Any nut				0.81 (0.65-1.01)
Peanut				0.84 (0.71-0.99)
Tree nut				0.90 (0.74-1.09)
Neurodegenerative disease				, ,
Any nut	_			0.98 (0.80-1.22)
Peanut				1.02 (0.84-1.24)
Tree nut				0.95 (0.71-1.26)
Stroke		-		(, , , , , , , , , , , , , , , , , , ,
Any nut		_ _		0.92 (0.79-1.08)
Peanut				0.97 (0.67-1.40)
Tree nut				0.96 (0.78-1.19)
Infection		-		()
Any nut				0.79 (0.56-1.11)
Peanut				0.68 (0.46-1.00)
Tree nut -				0.73 (0.47-1.14)
Kidney disease		-		
Any nut				0.69 (0.38-1.26)
Peanut				0.52 (0.27-0.98)
Tree nut		-		0.64 (0.40-1.03)
Diabetes	-			
Any nut				0.80 (0.54-1.18)
Peanut				0.78 (0.47-1.30)
Tree nut				- 1.01 (0.59-1.73)
Other causes		-	T	
Any nut	-		-	0.87 (0.79-0.94)
Peanut			-	0.90 (0.81-1.00)
Tree nut				0.85 (0.76-0.95)
0.2	0.5 1.0 2.0 0.2	0.5 1.0 2.0 0.2	0.5 1.0	2.0
	zard Ratio (95% CI)	Hazard Ratio (95% CI)	Hazard Ratio (95% CI)	

Nut Consumption and Risk of Coronary Heart Disease (NHS, 1980-1994)

Hu et al. 1997

Original Investigation

Vegetarian Diets and Blood Pressure A Meta-analysis

Yoko Yokoyama, PhD, MPH; Kunihiro Nishimura, MD, PhD, MPH; Neal D. Barnard, MD; Misa Takegami, RN, PhD, MPH; Makoto Watanabe, MD, PhD; Akira Sekikawa, MD, PhD; Tomonori Okamura, MD, PhD; Yoshihiro Miyamoto, MD, PhD

> *JAMA Intern Med.* doi:10.1001/jamainternmed.2013.14547 Published online February 24, 2014.

Figure 2. Pooled Systolic and Diastolic Blood Pressure (BP) Responses to Vegetarian Diets in Clinical Trials

Α			Statistic	s for Each	Study	Favors	Favors	
Source	Subgroup Within Study	Comparison	Difference in Mean	Lower Limit	Upper Limit	Vegetarian Diets	Omnivorous Diet	P Value
Rouse et al, ⁶ 1983	Lacto-ovo	Omnivorous	-6.8	-9.6	-4.0			<.001
Ferdowsian et al, ¹² 2010	Vegan	Omnivorous	-5.7	-11.1	-0.3			.04
Margetts et al, ⁷ 1986	Lacto-ovo	Omnivorous	-3.5	-6.9	-0.1			.047
Hakala and Karvetti, ¹⁵ 1989	Lacto	Omnivorous	-3.3	-8.3	1.8		_	.21
Kestin et al, ⁸ 1989	Lacto-ovo, men	Omnivorous	-3.0	-9.1	3.1			.34
Sciarrone et al, ¹⁴ 1993	Lacto-ovo, men	Omnivorous	1.5	-15.3	18.3			.86
Nicholson et al, ¹³ 1999	Vegan	Omnivorous	8.5	-10.2	27.2			.37
Total			-4.8	-6.6	-3.1	\diamond		<.001

-30.00 -15.00 0.00 15.00 30.00 Difference in Means and 95% CI

В			Statistics for Each Study			Favors 🗄 Favors	
Source	Subgroup Within Study	Comparison	Difference in Mean	Lower Limit	Upper Limit	Vegetarian Omnivorous Diets Diet	P Value
Ferdowsian et al, ¹² 2010	Vegan	Omnivorous	-5.5	-9.1	-1.9		.003
Rouse et al, ⁶ 1983	Lacto-ovo	Omnivorous	-2.7	-4.7	-0.7		.008
Hakala and Karvetti, ¹⁵ 1989	Lacto	Omnivorous	-2.5	-9.2	4.2		.46
Margetts et al, ⁷ 1986	Lacto-ovo	Omnivorous	-1.2	-3.1	0.7		.22
Sciarrone et al, ¹⁴ 1993	Lacto-ovo, men	Omnivorous	-1.0	-14.8	12.8		.89
Kestin et al, ⁸ 1989	Lacto-ovo, men	Omnivorous	-0.8	-6.0	4.4		.76
Nicholson et al, ¹³ 1999	Vegan	Omnivorous	4.8	-8.3	17.9		.47
Total			-2.2	-3.5	-1.0	\diamond	<.001
						-20.00 -10.00 0.00 10.00 Difference in Means and 95% CI	20.00

Effects on systolic BP (A) and on diastolic BP (B) are depicted as squares; error bars indicate 95% CIs. Meta-analysis yielded pooled estimates of -4.8 mm Hg (95% CI, -6.6 to -3.1) for systolic BP and -2.2 mm Hg (-3.5 to -1.0) for diastolic

BP, which are depicted as blue diamonds. Vegan diets were defined as omitting all animal products; vegetarian diets may include some animal products as indicated by the terms *lacto* (dairy products) and *ovo* (eggs).

			Statistics for Each Study			Favors	Favors	
Source	Subgroup Within Study	Comparison	Difference in Mean	Lower Limit	Upper Limit	Vegetarian Diets	Omnivorous Diet	P Valu
Fontana et al, ²⁷ 2007	Vegan	Omnivorous	-28.0	-36.8	-19.2	—		<.001
Teixeira et al,28 2007	Mixed	Omnivorous	-21.0	-26.3	-15.7			<.00
Ophir et al,43 1983	Lacto-ovo	Omnivorous	-20.8	-25.8	-15.8			<.001
Rodenas et al,21 2011	Mixed, women	Omnivorous	-19.4	-33.6	-5.2	← – – – – – – – – – – – – – – – – – – –		.007
Kim and Bae, 16 2012	Lacto-ovo, women	Omnivorous	-19.0	-27.3	-10.8			<.001
Orlov et al, ³⁹ 1994	Vegan	Omnivorous	-18.8	-33.9	-3.7	←		.02
Slavícek et al, ²⁶ 2008	Lacto-ovo	Omnivorous	-14.5	-19.3	-9.7			<.001
Nakamoto et al, ²⁵ 2008	Combined	Omnivorous	-11.7	-17.2	-6.3			<.001
Lu et al, ³³ 2000	Combined	Omnivorous	-11.3	-16.2	-6.5			<.001
Goff et al, ³¹ 2005	Vegan	Omnivorous	-11.0	-20.3	-1.7			.02
Yang et al, ²² 2011	Lacto-ovo, men	Omnivorous	-10.0	-13.3	-6.7			<.001
Yang et al, 18 2012	Lacto, men	Omnivorous	-9.2	-12.6	-5.7			<.001
Fernandes Dourado et al, 20 2011	Lacto-ovo	Omnivorous	-8.9	-15.1	-2.7			.00
Haines et al, ⁴⁶ 1980	Combined	Omnivorous	-8.0	-14.1	-1.9			.01
Wyatt et al, 37 1995	Lacto-ovo	Omnivorous	-7.1	-11.1	-3.1			.00
Armstrong et al,47 1979	Lacto-ovo	Omnivorous	-6.1	-11.7	-0.5			.03
Lin et al, ²³ 2010	Vegan, women	Omnivorous	-4.9	-9.6	-0.2			.04
Pettersen et al, 17 2012	Mixed	Omnivorous	-4.6	-7.9	-1.3			.006
Sebeková et al,29 2006	Lacto-ovo	Omnivorous	-4.1	-8.3	0.1			.06
Melby et al,40 1989	Combined	Omnivorous	-3.7	-7.2	-0.2			.04
Wiseman et al, ⁴² 1987	Mixed	Omnivorous	-2.8	-11.6	6.0		<u> </u>	.53
Williams et al, ³⁶ 1997	Combined	Omnivorous	-2.2	-3.7	-0.7			.003
Rouse et al,44 1983	Combined	Omnivorous	-2.2	-5.3	0.9		<u>l</u>	.16
Harman et al, ³⁵ 1998	Combined	Omnivorous	-1.7	-9.8	6.4		<u> </u>	.68
Melby et al, ³⁸ 1994	Mixed	Omnivorous	-1.7	-5.9	2.6		<u> </u>	.44
Pitla and Nagalla, ²⁴ 2009	Combined	Omnivorous	-1.6	-7.0	3.7		<u> </u>	.55
Burr et al, ⁴⁵ 1981	Combined	Omnivorous	-0.2	-3.8	3.4		: 	.90
Appleby et al, ³² 2002	Combined	Omnivorous	0.8	0.1	1.5		: •	.03
Su et al, ³⁰ 2006	Mixed, women	Omnivorous	1.1	-4.4	6.6			.70
Famodu et al, ³⁴ 1998	Mixed	Omnivorous	1.5	-3.3	6.4	_	— —	.54
Chen et al, ¹⁹ 2011	Lacto-ovo, women	Omnivorous	1.7	-2.0	5.4	-	—	.38
Sanders and Key, ⁴¹ 1987	Combined	Omnivorous	5.0	-1.3	11.3	-		.12
Total			-6.9	-9.1	-4.7	\diamond		<.001

Figure 3. Pooled Systolic Blood Pressure (BP) Among Vegetarians in Observational Studies

Difference in Means and 95% CI

Effects on systolic BP are depicted as squares; error bars indicate 95% Cls. Meta-analysis yielded a pooled estimate of -6.9 mm Hg (95% Cl, -9.1 to -4.7) for systolic BP, which is depicted as a blue diamond. Arrows indicate that the 95% CI exceeds the left line. Vegan diets were defined as omitting all animal products; vegetarian diets may include some animal products as indicated by the terms *lacto* (dairy products) and *ovo* (eggs).

Figure 2. Pooled Systolic and Diastolic Blood Pressure (BP) Responses to Vegetarian Diets in Clinical Trials

Α			Statistic	Favors	Favors			
Source	Subgroup Within Study	Comparison	Difference in Mean	Lower Limit	Upper Limit	Vegetarian Diets	Omnivorous	P Value
Rouse et al, ⁶ 1983	Lacto-ovo	Omnivorous	-6.8	-9.6	-4.0			<.001
Ferdowsian et al, ¹² 2010	Vegan	Omnivorous	-5.7	-11.1	-0.3			.04
Margetts et al, ⁷ 1986	Lacto-ovo	Omnivorous	-3.5	-6.9	-0.1			.047
Hakala and Karvetti, ¹⁵ 1989	Lacto	Omnivorous	-3.3	-8.3	1.8		-	.21
Kestin et al, ⁸ 1989	Lacto-ovo, men	Omnivorous	-3.0	-9.1	3.1		<u> </u>	.34
Sciarrone et al, ¹⁴ 1993	Lacto-ovo, men	Omnivorous	1.5	-15.3	18.3			.86
Nicholson et al, ¹³ 1999	Vegan	Omnivorous	8.5	-10.2	27.2			37
Total			-4.8	-6.6	-3.1	\diamond		<.001

-30.00 -15.00 0.00 15.00 30.00 Difference in Means and 95% CI

В			Statistics for Each Study			Favors	Favors	
Source	Subgroup Within Study	Comparison	Difference in Mean	Lower Limit	Upper Limit	· Vegetarian	Omnivorous Diet	P Value
Ferdowsian et al, ¹² 2010	Vegan	Omnivorous	-5.5	-9.1	-1.9			.003
Rouse et al, ⁶ 1983	Lacto-ovo	Omnivorous	-2.7	-4.7	-0.7	-#-		.008
Hakala and Karvetti, ¹⁵ 1989	Lacto	Omnivorous	-2.5	-9.2	4.2			.46
Margetts et al, ⁷ 1986	Lacto-ovo	Omnivorous	-1.2	-3.1	0.7		<u></u>	.22
Sciarrone et al, ¹⁴ 1993	Lacto-ovo, men	Omnivorous	-1.0	-14.8	12.8			.89
Kestin et al, ⁸ 1989	Lacto-ovo, men	Omnivorous	-0.8	-6.0	4.4		4	.76
Nicholson et al, ¹³ 1999	Vegan	Omnivorous	4.8	-8.3	17.9			.47
Total			-2.2	-3.5	-1.0	◆		<.001
						-20.00 -10.00 0. Difference in Mo	00 10.00 eans and 95% C	20.00

Drop in SBP -6.9 mmHg (CI -9.1 to -4.7)


Figure 5

The Lancet 2017 389, 1730-1739DOI: (10.1016/S0140-6736(17)30752-3) Copyright © 2017 Elsevier Ltd <u>Terms and Conditions</u>

By the numbers...

Cooking by numbers...

to cook-with a kit

By Bryan Walsh

THERE WERE MANY REASONS WHY I. like a third of Americans, was a noncooker for so long. I didn't see the point in spending time in the kitchen when I could be exercising, or going out, or staying in and watching shows about cooking on TV. There were also those two years when I didn't realize my landlord hadn't booked up the gas to

skills and fear marital dissolution. They're called dinner kits, and they provide everything you need to cook, other than a sous-chef to berate. The industry is exploding. According to the consultancy Technomic, the global meal-kit market topped \$1 billion in 2015 and is projected to hit \$10 billion

I didn't nail every recipe from the start. When I was done with the beef in the Beef Gyritos on Mini Pitas With Tzatziki-the third meal kit I tried-it had a texture best described as shoeleathery. And this isn't the cheapest way to make dinner. Expect to pay \$8 to \$12 per person per meal.

TIME march 21,2016

Plated and Blue Apron

Kroger's Prep + Pared!

February 9-12, 2017 • Napa Valley, California

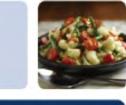
Healthy Kitchens, Healthy Lives[®]

Welcome

Overview

Conference Program

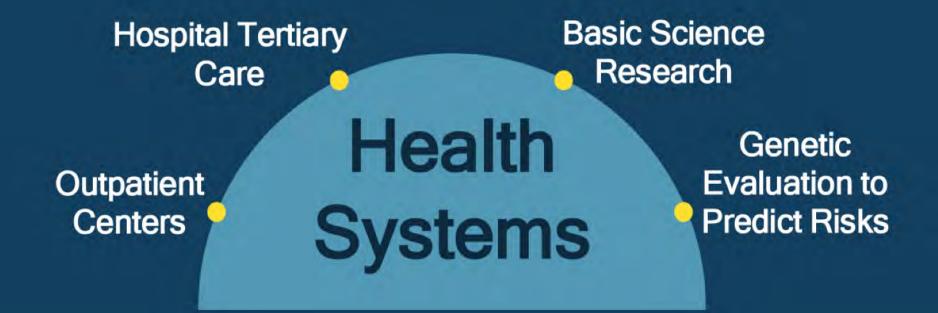
Gronts & Exhibitors


Registration

Caring for Our Patients and Ourselves

REGIST ER FOR THE CONFERENCE

A Leadership Conference Bridging Nutrition Science, Healthcare, and the Culinary Arts



STAY CONNECTED

F

NEWS & MEDIA

HISTORY & ABOUT

Hospital Tertiary Care

Outpatient Centers

> Exercise Therapy Centers

Basic Science Research

> Genetic Evaluation to Predict Risks

Mindfulness Centers Health Coaching Psychotherapy/Pharm

Teaching Kitchens and New Food Business Innovations

Adapted from Eisenberg, D Burgess, J Academic Med 2015

© Eisenberg, HKHL 2016

Sage Advice

"Identify experts from disciplines different from your own, with whom you do not share a common language, but with whom you share a common question. Join them to build a bridge. From this bridge you will make your greatest professional contributions and experience some of your greatest personal satisfaction."

> Howard Hiatt, MD, Former Dean, Harvard School of Public Health

Who Will Build this Futuristic "Bridge"?

Medical/Nutritional Experts and Epigeneticists

Culinary Experts (Chefs)

Exercise and Movement Experts

Better Food Health Economy Future IT Experts and Entrepreneurs

Mindfulness
Trainers

Behavioral Change Experts

Agricultural Experts Sustainability Experts

© Eisenberg, HKHL 2016

Solution? Let's Google it...

Our mission To inspire and enable the Google community to make food choices and enjoy food experiences that support them in being their best.

Michelle Hatzis, PhD Google Food: Global Health & Wellness Liv Wu Google Food: Teaching Kitchen

Google's Food program fuels Google's sustainable high performance

Support Googlers to be at their best, both short as well as long term Support and contribute to Google's culture, environment, and work dynamics

Support Google teams in achieving team specific results Helping Google attract and retain happy and healthy top talent

W KitchenSync

KitchenSy

OWNLOAD

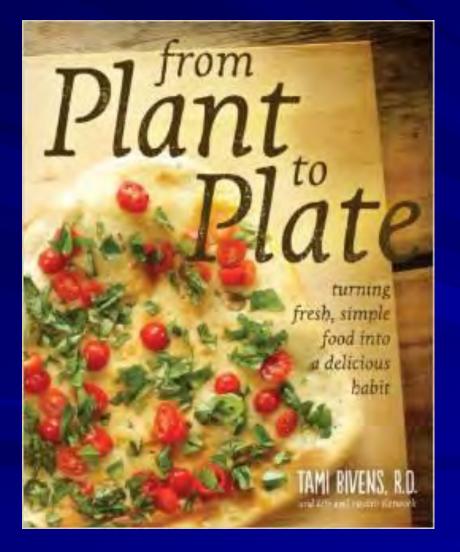
THE DOWNLOAD ON FOOD

Code for Cooks

Initial Outcomes: Pre/Post/6-months (N=84)

84% increased confidence in cooking skills 93% Class helped me "detach" from work

58% Now cook from scratch 3-5 times a week 83% Extremely likely to refer program to co-worker


Lack of knowledge. Lack of skill. Lack of time. Fear of wasting time. Fear of wasting money. Calorie density?

Only in America...

could you make cooking into a spectator sport!

Cookbooks...video cookbooks!

www.lifeandhealth.org

SCRATCHFOOD

scratch

LET FOOD BE THY MEDICINE • Hippocrates

scrate

Mom's Mac n' Cheese 💿 💿 with Cinnamon Apples

with Fresh Green Beans

hen simply nothing else will do! The owner's Mother used to make this cheesy classic for all her kids birthdays, ired with slow-cooked, "candied" Apples.

Homestyle Meat Lasagna (00)

ved with Fresh, lightly seasoned Green Beans.

yers of pasta held together with fluffy Ricotta and gooey

volone.Topped with our own Roasted Tomato Marinara.

760

19

610

16

cal

340

8

320

300

Old World Chicken Cake (6) (6) (6) with Succotash

nicken Breast bound together with bread crumbs, eggs nd seasoning. Served with our Special Succotash of Corn, nite Beans, Sweet Potatoes and just a bit of braised Kale.

Orange Chicken 6000 vith Grains & Rice Blend and Fresh Broccoli

he subtle sweetness and orange fragrance draws you in and the lightly battered Chicken grabs you . Served with our House ins and Rice Blend and Fresh Broccoli.

smaller portions - basic flavors

cal

420

Kids Meat Lasagna 600 (E) with Fresh Green Beans Layers of pasta held together with fluffy Ricotta and gooer

Provolone. Topped with Kid Friendly Marinara. erved with simply prepared Green Beans

Mom's Mac n' Cheese (6) with Cinnamon Apples

When simply nothing else will do! The owner's Mother used to make this cheesy classic for all her kids birthdays, ired with slow-cooked, "candied" Apples.

Homestyle Meatloaf () with Mac n' Cheese and Cinnamon Duice Carrots leatloaf that Mom would approve of- with a hint of onion

and a traditional brown sugar glaze. We rounded out this dish with our own Mac n' Cheese and Signature Glazed Carrots.

cal = calories

w = weight watchers

Chicken Parmesan () (with Pasta and Fresh Green Beans

ightly breaded all natural Chicken Breast served with a healthy coop of our own Roasted Tomato Marinara. Served over Curly avatappi Pasta and lightly seasoned Fresh Green Beans

Black Cherri Teriyaki Chicken 💿 🍥 with Fresh Broccoli and House Grains & Rice

unique combination of sweet Black Cherries and savory by Sauce drizzled over carved Chicken Breast served with Fresh occoli and our our House Grains and Rice Blend.

Homestyle Meatloaf 600 with Mac n' Cheese and Carrots Meatloaf that Mom would approve of- with a traditional brown

sugar glaze. We rounded out this dish with our own Mac n' Cheese and simply prepared Carrots.

Chicken Parmesan @ D 🖲 with Pasta and Green Beans

Lightly breaded all natural Chicken Breast served with our kid friendly Marinara. Served over Curly Cavatappi Pasta with simply prepared Green Beans.

with House Grains & Rice and Black Bean Mashup Ve use Hand Carved, All Natural Chicken Breast. The accompanying Black Bean Mashup consits ofRoasted Corn. Black Beans and Zucchini.

Roma Chicken Bowl

Whole Grains Risotto & Italian Green Bean Mashup We combined all of our most nutritous and delicious vegetable and grain combinations to create a perfect meal. We paired it with a nutrient dense blend that includes Green Beans, 10 Navy Beans and Red Peppers.

9

380

Sesame Flat Iron Steak 💿

with House Grains & Rice and Asian East Mashu

Kale and Shiitake Mushrooms in a Miso-Soy Marinade.

Served with our House Grains and Rice Blend, and Green Be

We use Hand Carved, All Natural Chicken Breast.

632

cal = calories

weight watch

with Broccoli & Kale Slaw This inspired dish is a simple, clean presentation Carved, Seasoned Flat Iron Steak over a Ginger and Sesame Slaw of Broccoli, Kale and Cabbage.

Chicken Cabbage Roll (

Steak and Green Bean Stew 240 To meet the classic Southern Tastes of our clientele, we re-enginnered the Green Bean Stew of our youth. We have introduced lean Steak to the mix and replaced tradtional 6

Scratch Foods has taken the classic Cabbage Roll and cle The soft Cabbage exterior paired with a naturally rich Tor European style sauce enhances the savory Chicken filling

cal 290 5

-

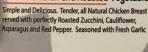
Chicken Curry with Vegetables (served with House Grains and Rice This Inspired Dish will satisfy your jones for Indian Food,

still keep things healthy. All Natural Chicken with classic Garam Masala spice tossed with Peas, Cauliflower and Sv

vegetarian contains no meat

Spaghetti Squash with Marinara ca 230 with Tuscan Vegetables

The natural sweetness of Spaghetti Squash pairs perfectly with he sweetness and acidity of Scratch's fabulous marinara. 6 With the addition of Sweet Potatoes, Kale and Portabellas. This one is clean comfort food !


Tofu and Broccoli Pad Kapow 💿 served with House Grains & Rice

We season and slow roast the tofu to achieve a nice firm hen we toss it with a slightly sweet Asian brown sauce f nd broccoli to achieve this classic Thai dish.

Russet Potatoes with seasoned Sweet Potatoes. Classic Comfort Food !

Sage Advice

"Identify experts from disciplines different from your own, with whom you do not share a common language, but with whom you share a common question. Join them to build a bridge. From this bridge you will make your greatest professional contributions and experience some of your greatest personal satisfaction."

> Howard Hiatt, MD, Former Dean, Harvard School of Public Health

Who Will Build this Futuristic "Bridge"?

Medical/Nutritional Experts and Epigeneticists

Culinary Experts (Chefs)

Exercise and Movement Experts

Better Food Health Economy Future IT Experts and Entrepreneurs

Mindfulness
Trainers

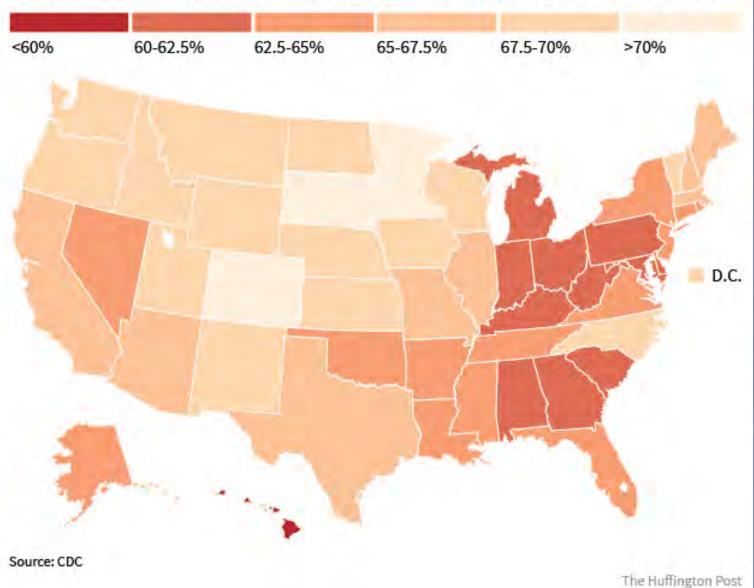
Behavioral Change Experts

Agricultural Experts Sustainability Experts

© Eisenberg, HKHL 2016

CALERIE Study

 Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy


- Reduced caloric intake by 25%.
- Average caloric reduction was ~12%.
- Resulted in 10% wt loss.
- BP dropped by 4%, total cholesterol 6%, CRP 47%.

Where Americans Need More Sleep

The CDC recommends adults get at least seven hours a night.

Age-adjusted percentage of adults who reported ≥7 hours sleep per 24-hour period, 2014

